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PREFACE

This Lecture Series, sponsored by the Fluid Dynamics Panel and the Consultant and
Exchange Program of AGARD, being held at the Von Kdrman Institute, Rhode-Saint-Genése,
Belgium and — for the first time — also at Wright-Patterson Air Force Base, Dayton, Ohio,

USA is a follow-up of the annual Lecture Series on Numerical Methods in Fluid Dynamics at
VKL

The uniform success of these Lecture Series during the past years, with more than one
hundred participants each year from many European countries, the USA and Canada
certainly reflects international recognition of these seminars as a forum for lively

discussions, continuous advancements, and sound learning in the field of computational
fluid mechanics.

The material to be presented this year comprises recent developments of the finite
element method, numerical turbulence modelling, relaxation methods for time dependent

equations, flow representation by discrete vortices and advances in the treatment of the full
Navier-Stokes equations.

H.J.WIRZ
Lecture Series Director
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Summary

In this paper the mathematical formulation of the finite element method, and its
application to fluid mechanics are considered. In Part I an introduction to the mathe-
matical theory is given beginning with the variational formulation of a problem. The
three basic steps in the finite element method are discussed: 1) the subdivision of the
domain; 2) the definition of the elements to approximate the unknown functions; and,

3) the forming of the algebraic system for the unknown coefficients. 1In Part II the
application of the finite element method to two problems in fluid mechanics is given.
The first of these problems is boundary layer flow, and the other is transonic flow.

Introduction

The finite element method is an approximate method for solving the partial differen-
tial equations which arise in engineering and mathematical physics. In this method the
domain of the problem is divided into many small elements of convenient shapes, e.g.,
triangles, rectangles. Choosing suitable points called nodes at corners, midsides, etc.,
on a local finite element, the variables in the differential equation are written as a
linear combination of appropriately selected interpolation functions and the vaiues of
variables specified at the nodes. Using variational principles or the method of weighted
residuals, the governing differential equations are transformed into a system of
algebraic equations. The nodal values of the variables are obtained by solving this
system.

The concept of the finite element method was introduced in a paper by R. Courant
1] in 1943. However, the development of the method was by structural engineers in the
1950's in order to analyze the large system of structural elements in aircrafts. Turner,
Clough, Martin and Topp [2] presented the first paper on this subject, followed by
Clough [3] and Argyris [4], among others. Applications of the method to non-structural
problems such as fluid flows and electromagnetism was initiated by Zienkiewicz [5], and
applications to problems of interest in nonlinear mechanics by Oden [6].

Even though engineering problems had been solved by the finite element method since
the 1950's, no formal mathematical theory existed. However, due to the success of the
engineering calculations mathematicians began to analyze the method in the late 1960's.
Recently Babuska and Aziz [7], Strang and Fix [8], Ciarlet [9], Raviart [10], among
others, have presented the finite element theory from a mathematical point of view.

In this paper we consider both the mathematical formulation of the finite element
method, and its application to fluid mechanics. 1In Part I we give an introduction to
the mathematical theory, emphasizing the different types of elements. In Part II the
application of the finite element method to two problems in fluid mechanics, boundary
layer flow and transonic flow.

Part I. Mathematical Formulation

The finite element method (FEM) is a method for obtaining approximate solutions to
the partial differential equations which govern a given physical problem. Any approximate
method for the solution of partial differential equations consists in the determination
of the unknown functions at a finite number of discrete points distributed throughout
the domain of the problem. The values of the functions at these points are obtained as
the solution of an algebraic system of equations determined from a discrete representation
of the governing equations. If the values of the unknown functions are needed at any
other points in the domain, they are determined through given interpolation formulas.

In finite difference methods these basic steps are usually handled in the following
manner: The discrete set of points are the corners and/or midpoints of a rectangular
(usually regular) mesh. The algebraic system for the unknown values at these points are
determined by replacing all the partial derivatives by finite difference approximations.
The value of the functions at arbitrary points is determined by the usual interpolation
formulas obtained from Taylor expansions.

The characterization of these steps for the finite element is what is to be
considered in this part of these notes. The first step in this characterization is the




integral or variational formulation of the governing equations. Starting from the
variational Torm of the equation the three basic steps are discussed, that is, the sub-
division of the domain, the approximation of the unknown functions, and the determination
of the solution at arbitrary points within the domain. To help illustrate the application
of the above concepts a simple example of the application of the method is carried

through from start to finish. Finally a brief explanation of the use of the method in
time dependent problems is given.

I. Preliminary Notaticn

Before beginning the variational formulation, the following notation is introduced.
Let o be a given domain with boundary r . Denote by Lp(a) the space of functions
defined on 9 which are square integrable. The inner product and rorm for L2(2) are

(u,v) vt g vdg (1)
Ly(a) = @
‘ . 2..141/2
“””Lz(n) (“‘“}Lz(n) (é u“da) (2)
The space H](ﬂ) is the space of functions defined on @ whose first derivatives (in
the sense of distributions) are in Lz(n) . The inner product and norm for Hl(q) are
u av , 3u 3v .
= LS CAT S B G L
(u,v)H](n) £ (a : Y 5y uv)da (3)
lall 4 = (w2 (4)
H' () H (2)
Finally, define H](n) as the subspace of H1(o) which satisfies zero boundary conditions. 4

HA(Q) has the same®inner product and norm as Hl(@) , or the equivalent inner product
and norm '

o du 3
(U,V)H](Q) = é (3; 31 + T 3-)dﬂ (5) ]
0
lufl 4 = Cusu) 42 (6)
Ho(2) o(%)

I1. Variational Formulation

Given a domain Q with boundary T consider the equation

)

n

|

1

"
-
prs
=]
to)

- AU

u=20 on I . (8)

This equaticn, known as Poisson's equation, arises in many physical situations such as
potential flow.

It is well known that the solution to (7) with boundary condition (8) may also be
obtained as the minimum of the quadratic functional

= [ (23?7 - fulde (9)
Q

taken over all wu ¢ Hl(n)

_ In order to find the function that minimizes I it is necessary to take the first
variation of I and set it equal to zero. The result of this operation is

I (25 2% + 2 Mjda = [ fvda , for all.v € Hi(a) . (10)
Q

The left-hand side of (10) is known as a bilinear form. The properties of this bilinear
form allow one to conclude the existence and uniqueness of a minimizing function u
Equatiqn (10) is known as a variational principle since it was derived from the first
variation of a quadratic functional. Not all equations have a corresponding representa-
tion as a quadratic functional. However, all that is really necessary is to obtain an
equivalent bilinear form that has the properties needed for existence and uniqueness.
These properties are given by the following theorem.

Theorem I. If

1) Hy and H, are two real Hilbert (inner product) spaces with inner product




(+s+)y. and (-,-), respectively.
1 2

2) B(u,v) 1is a bilinear form on Hy < Hy , u € Hy v e “2 such that

1Blu,v)| < Colluly vl (1)
inf sup [B(u,v)[ > Cp > 0 (12)
ueH, veH, S

flulfy =1 fivily =
H] Hz—l

sup |B(u,v)| >0, v #0 )
UGH]

where C] < ® .

3} f € Hé , i.e., f is a linear functional on H, then
4) there exists a unique element uy € Hy such that

B(uo,v) = f(v) , for all v € H, (14)
{18 3|
I o (15)
u < ¥
0 H] C2

Now we show that the conditions of Theorem 1 are satisfied for equations (7), (8).
Let Hy = Hp = H§(2) . Take for the bilinear form

29 By ponay
B(u,v) = g{ Bt

<

Using the equivalent norm in Hl(n) (eq. (6)), it follows from the Schwartz inequality
that

‘B(U,V)l < C]”U” 1 [[vl 1
wlee) Tul(e)

Thus condition (11) is satisfied. From the ellipticity it follows that

2 1
B(v,v) > C,livll , for all v ¢ H_ ()
- 72 Hl(Q) 0

Thus conditions (12) and (13) are satisfied.
Let

f(v) = [ fvda , e (W ()
Q

Thus by Theorem 1, there exists a unique function Uy such that
Blug,v) = flv) ,

o ) I
lugll 4 < (Ho(a))
s Ho(2) C3

The importance of the variational formulation for approximate methods is that it is
now only necessary for first derivatives of the approximate solution to exist, whereas
to solve (7) directly would require second derivatives.

The most widely used method of obtaining a variational equation from a given
equation is known as the method of weighted residuals. Consider the equation

Lu = f E (16)
with boundary conditions
i = Uy (17)

where L 1is a second order operator. A solution of (16) and (17) also must satisfy




[(Lu-f)dﬁ
Q

A weaker, but still necessary condition, that must be satisfied is

[(Lu-f)vda) = 0 for all v ¢ Hl(n) . (18)

Q
A variational equation may now be derived from (18) using the Green-Gauss Theorem. The
use of (18) to derive the variational principle is known as the method of weighted
residuals, since for an approximate solution Uy the residual

Rh = Luh =
is not zero, but it is required that its weighted integral (with weight v) be zero.
In the previous discussion Dirichlet boundary conditions have only been examined.

More general boundary conditions may be easily handled by adding them to the variational

principle.

III. The Finite Element Method

3.1 Definition of the Method - Consider the problem: Find u € V such that for
every v € V

B(u,v) = f(v) , (19)

where the bilinear form B(u,v) satisfies the conditions of Theorem 1. The bilinear
form is obtained through the variational formulation of the given problem.

A conforming approximate method for solving eq. (19) consists in finding an approx-
imate solution wuy in a finite dimensional subspace Vh of the space V , where up,
is the solution of the problem

B(uh,vh) = f(vh) « for all v e ¥ (20)

Note, that as a consequence of Theorem 1 the above problem has a unique solution
and further

”u'”h”V G ””'vh”V

“ vhévh
To see tnis, let wh be an arbitrary element in vh . From (19) and (20) it follows
that:

B(u-uh,wh) =0 .
Thus
Z
- < = = - - lu=-u.ll =
allu-uplly < B(u up»u uh) B(u Up,»u vh) < Cllu uhhvlh thLV

and the conclusion follows.

The above simple result indicates that the problem of estimating error is reduced
to a problem in approximation theory, namely the distance between the solution u and
the subspace Vh -

The finite element method in its simplest form may be considered as a conforming
approximate method in which the subspaces Vg are of a special form. More precisely,

pp

assume that a second order problem is to be roximated. Then the problem to be
faced is to construct a finite dimensional subspace Vp of the space Hl(a) or_ Hi(a)

Suppose & 1is_a polygon in RZ . Consider a triangulation Tp over the set @&
i.e., the set o is expressed as a finite union UT of triangles T in such a way that
Tety

whenever Ty and T, are distinct triangles of T,, their intersection is either
empty, or a common vertex, or a common edge. An example is given in Figure 1; while
Figure 2 shows a triangulation which is not permissible since the intersection of T,
and T2 1is not a common edge.

With such a triangulation is associated a space Vy of functions defined on Q
whose restriction to each triangle T belongs to a finite dimensional subspace P17 of
function defined on the set T . So far, the subspace Vi depends on a given
triangulation Ty and the subspace Py, TeTh . Note that even if the space P consists
of very nice functions, there is no reason why the conclusion V, c H1(a) should hold.

For this reason a simple additional condition is needed, i.e., V| ¢ CO(Q) (c®(a) is the
set of continuous functions on @ ) . It is not difficult to_show using Green's formula
that with the additional condition Pp ¢ Hl(a) , then Vy c Hl(a) . If further the
functions in Vp vanish on the boundary T , then the inclusion Vyh ¢ H&(n) holds.




The discrete problem (20) is generally solved in practice as follows: Let

o "
3 3=

be a basis for Vh , then thke solution
N
3 jzluj°
of (20) is obtained by solving the linear system

N
_Z] B(°i‘°j)ui = f(®j) (I SN
1=

where the matrix A = (B(¢ »6.)) , known as the stiffness matrix, always has an inverse.
When B(u,v) is symmetr1c tﬁen the matrix A is also symmetric and positive definite,
which is not the case for finite difference methods involving non-rectangular regions.

In selecting the basis N it is of the utmost importance, from a practical
point of view, that the resu1t1ﬂg matr1x be as sparse as possible, i.e., have many zeros.
Recall that the coefficients of the matrix A = (B(¢1.¢j)) are integrals. In the case
of the previous example

Q
@ @
‘<L9

¢
s ]
X 3y

=

}dxdy

%)

B( j= % f (2
Gasds) = L
1773 TeT, T &

Thus B(é¢:,6:) = 0 , whenever the intersection of the supports of 4. and ¢. 1is of
measure zéro Consequently, one must try to have basis functions ¢. whose gupports
are as small as possible. J

3.2. Definition of the Elements - The finite element method is distinguished from
traditional Galerkin or Rayleigh-Ritz methods primarily by the special character of the
system of functions used. Indeed, it is the remarkably wide variety of these systems
that gives the method its flexibility and practicality. The purpose of this section is
to discuss briefly a classificatior of the possible alternatives and to give an analysis
of their basic properties. There are three essential components to the classification,
namely: a) geometrical structure; b) polynomial structure; and c) nodal structure.

These terms shall be given a precise meaning in such a way that any finite element
is uniquely determined by specifying each of these three components. Through this
specification the order of accuracy and the smoothness, among other things, may be
determined.

The starting point for any finite element is the geometric structure of the element.
As indicated earlier, @ is divided into subregions, e.g., rectangles or triangles, and
the nature of the subregions constitutes a fundamental distinction between elements.
To be specific, let o be a rectang]e with sides parallel to the coordinate axes. Sub-
divide o into rectangles Rm with sides parallel to coordinate axes. The
finite element space will in gssence consist of functions whose restrictions to
i=1,...,n , reduce to polynomials and precise spec1f1cat1on of the subdivision o}
defines the polynomial structure of the space. Begin with piecewise linear functlons

3.3. Linear Elements

3.3.1. Bilinear Elements in Rectangles - Let the space V, be the set of functions

z (x:y) wh1ch are bilirear in each rectangle R; of the subdivisionofa, i.e., for each
15152 5

vix,y) = a; + byx + c.y + dyxy , (x,y) ¢ R,

Note that V, contains discontinuous functions. Thus, as was discussed previously the
space Vg, 1is not suitable for solving partial differential equations.

One of the more interesting aspects of finite elements is the fact that the addi-
tional smoothness can be achieved by the introduction of a nodal structure on a basic
space such as Vg . To see this simple fact let

5 1
vV = V° n H ()
and consider the set of nodes of the rectangles {Ri)?=1 denoted by {a. ceesay }

Clearly a function v € Vg is in V if and only if v is continuous at : ';N
To see this, let v ¢ V such that it is continuous at each node aj (1<1<Ni €.y
the different po]ynomia? representation of v have the same function vaTues at a fixed

node aj . One must show that v is continuous across the boundary between rectangles.
Note that the line L separating any two rectangles R, , Rj is either horizontal or

1
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1-6

vertical. In either case the difference between the representation of v in Rj and
that in Rj 1is linear in x or in y . Since it vanishes at the two nodes on L , it
therefore must vanish everywhere on L . (This argument obviously fails if the sides
of the rectangles were not parallel to the coordinate axes.)

Furthermore, note that any v ¢ V is uniquely determined by its values, Vi Vy
at the nodes. This follows immediately from the fact that on any given rectangle
R:(1<i<M) v must take on specified values at four nodes. This in turn uniquely determines
te constants aj, bj, cij and dj . Later in this section elements whose nodal structure
is more elaborate shall be discussed. However, the point to be underlined is that all
finite element spaces, even the so-called spline element , have a nodal structure and

this plays a fundamental part in the theory of finite elements.

The nodal structure is also significant since it is typically the first step in
the construction of a basis, which usually consists of unit vectors. The fact that each
v € V 1is uniquely determined by its nodal values suggests that for each node consider
the function ¢;(x,y) which is one at aj and zero at other nodes ai(ifj) . Observe
that any v € V" can be uniquely written

N
vix,y) = z via,) c»j(x,y)

As pointed out earlier an essential feature of this nodal structure which is also present
in all finite elements is its lccal character, i.e., the associated base

N
(¢}

Vi
will be local in the sense that the support of each ¢. will approach zero as the sub-
division is refined. In particular for the piecewise “linear space the function 45 1is
zero in any rectangle Rj not containing aj as node. Finally note that the order of
accuracy is 2

3.3.2. Linear Elements in Triangles - Before leaving linear elements it is perhaps
worthwhiTe to point out that there is an alternate element that is based on a different
geometric structure and polynomial structure, but otherwise the same (i.e., the same
nodal structure, smoothness, and accuracy).

In particular, assume that o s a polygon which has been subdivided into triangles
Tys.-.5Tp . As before the basic space Vo consists of all functions- v which reduce to
a linear function

vix,y) = a, + bix+ 3

i
in each triangle T. . A function v € V5 is in Vj = Vg N H](Q) if and only if v
is continuous at thd vertices 31 @25 -<.5 ay ©of the triangles T7, ««:s IM

Note that the above representation of v has only three terms and does not contain
the cross product term xy . This of course reflects the fact that a linear function is
determined by three conditions in a triangle while a bilinear function requires four
conditions in a rectangle.

3.4. Cubic Elements

In the next two sections cubic elements are considered. The reason for considering
this specific class of elements is that next to linear elements it is the most widely
used class.

3.4.1. Cubics in Rectangles - In this section elements having a rectangular geometric
structure are considered. Thus, suppose that o 1is a rectangle with sides parallel to
the coordinate axes and

where Rj are rectangles. Consider two types of nodal structures.
a) Lagrange type structure, where only function values are involved.

b) Hermite type structure, where both function values and values of derivatives
are involved.

a) To begin with, consider the case o = [0,1] . Let o be subdivided into
smaller intervals. It is necessary to construct a space of continuous functions which
are cubic on each subinterval. Four conditions determine a cubic a + bx + cx2 + dx3
on a given interval, and this suggests a nodal structure consisting of the requirement
that each v in V assumes specified values at four predetermined points. To preserve
continuity one chooses two of the points to be the end points of the interval and
arranges the remaining two points symmetrically. More precisely, let




A ,

be a subdivision of o = [0,1] . Introduce the nodes

say ?hai
Tgiag * Vqr Pgquy T Ay Roge By C By v, (21) J
where 83§ = aj4]- a »andi = 1, 2, 3, ..., M-1 . Alsao, Tet N = 3M - 2 and Zy =,
If V denotes the space of all continuous functions which reduce to a cubic

polynomial on each interval (aJ.aJ+]) » J = 1,...,M-1 , then each v € V is uniquely

determined by its values at the nodes (zJ} | bas1s for V is obtained in the usual

manner. In particular,for each zj , 1 < j < N , consider the unique function o5 o with

oj(zi) = fgy

the set {¢i)i§] form a basis for V , in fact every v € V can be written

M
wix} = ] v(zj)¢j(X)

Now the space V is used to construct a two dimensional finite element space. The basic
idea is to take tensor products. In part]cu]ar let & be written as the garte51an
product of intervals in x and y . Let {a )), Gi=h, ,M1) and

(j=1,...,M2) be grids for x and { 1nterv? § respect1vely, each w1t% E?rrespond1ng
nodes and piecewise cubic basis {Zj . {¢J T L3=150 5N and ( i {¢J 2)}
(j=1,...,N2) . The grid

(x;s¥4) = <ag1> : agz)) i
defines a rectangular subdivision of @ , Ry o1 = T,...,M, i.e., J
" M
e

Now a new space V on @ 1is defined as the set of all continuous functions on & which
reduce to polynomials

in each rectangle R, , 1 < i <M
As before, note that ea?? fun n v(x,y) € V is uniquely determined by its
values at the nodes ) and moreover it has the representation

"1 s
vix.y) = } _?1 V(Zi)°§])‘X)¢§2)(¥)

i=1 j=

Thus the tensor product {@i(])(x)¢.(2)(y)} of one dimensional basis gives a basis in
two dimensions. J

Observe that clearly each v ¢ V is continuous, that there are functions in V
with discontinuous gradients and the order of accuracy is 4.

The first impression one may have of the Lagrange cubic element is the rather
large number of unknowns, in fact 16, per rectangle. Historically this generated an
interest in finding new cubic elements having fewer unknowns. The elements that resulted
from this search are given the name serendipity. There exists a systematic mathematical
derivation of the so-called serendipity element, we refer the interested reader to [11]

1 b) The Lagrange cubic elements defined above are only c® . In order to obtain
C' (continuous first derivatives) cubic suitable for fourth order partial differential
equations the so-called Hermite elements, whose nodal structure involves not only function
values but also derivatives, are constructed. As observed earlier, 16 conditions
determine a bicubic of the form

3 3 5,73
) ) “1jx1yJ (22)
i=0 j=0

in a rectangle. In what follows the redundant terms in eq. (22) are exploited so as to
obtain an element with extra smoothness.




Consjder the difference V between two polynomial representations Py and P
along a line L (varying only in y) joining two adjacent rectangles, say Rj(j=],2§
For €O continuity Py = P2 on L and for Cl continuity

o
3 ay ay

on L . To achieve C continuity something about the first derivatives of v on L
must be specified. Suppose v , %%(by symmetry) %% are specified at the nodes A and B,

3P 3P 3P 3P

; : e ; _ I . 2 = 2

the end points of the line L . This implies that P] = P2 e A and Iy 3y
at A and B . Since P, - Pp s cubic (in y along L) from the first and the last of

the above conditions Py = P on L . Observe that %; [P]-Pz] is also a cubic on L

which vanishes at A and B . If
2 fg—(P -P,)] =0 at A and B
3 ax k2 g

3P 3P 2
el 2 3V
then v T Thus m
tions per node and sixteen conditions per rectangle. Thus, a cubic of the form_(22) is
uniquely determined in any rectangle. Therefore any function v in the set of C
functions V which reduces to a cubic of the form (22) on each rectangle Rj 1 < i < M

is also specified at all nodes, which gives four condi-

is uniquely determined by values v , %% > %% , and %;%7 at the vertices of the rectangles.
Moreover, a basis for V is obtained by successively setting one of the nodal conditions
equal to one and the others equal to zero. Thus at each node a. there are four functions

J
¢j(°’6) , 0 <a, B8 <1 such that

aai+si 0 j#2 or (a,8') # (a)8)
¢J(£1) = 1

] 1 & i i
a .8 i=2 and (a',8') = (a,8)

ax™ ay
It is easy to see that the function ¢(“’?)(x,y) is of the form

s (8 (x,y) = o(@)(x) . 4(B)(y)

3.4.2. Cubics in Triangles - Let

where T],...,Tm are triangles.

a) The first type of elements to be considered are Lagrange cubics. As before, the
space V must contain at least continuous functions. Furthermore, the cubic will have a
local representation of the form

) a, x'yd (23)
i+j<3 1

with total degree 3.

Along any line joining two adjacent triangles the difference between two represen-
tations of the form (23) will be a cubic. For this difference to vanish identically on
this line it must vanish at four points. Hence, four nodes on each side of a triangle
or nine nodes per triangle are needed. The representation (23) contains ten constants,
thus an additional condition is needed. The choice of this extra nodal condition 1s
somewhat arbitrary and usually the centroid of the triangle is taken for the additional
node.

Let V be the set of all continuous functions in @ which reduce to cubics of the
form (23) in each T; . Denote by ajy,...,ay all the vertices, centroid and the points
on the side of each triangle. Then any v ¢ V is uniquely determined by the values of

1j(v) = v(aj) , and any such v can be written

N
vix.yi: = ¥

i (V)oj(x,y) .

(lj
where ¢4 € V satisfies ¢j(aﬁ) = 6jg

b) The final cubic elements are the Hermite cubics on triangles. As in the




rectangular case, the Hermite cubic elements are a proper subspace of the Lagrange
elements. However, they have continuous de{ivatives only at isolated points and not
everywhere in Q , that is, they are not C' .

In particular, the nodal configuration normally used for the Hermite cubic is to
%% X %% at the vertices of all triangles and the value of of v at the
centroids. Observe that with this nodal assignment v and its first derivatives are
continuous at the vertices of the triangles, and this in turn implies that v 1is con-
tinuous in 2 but not C! . In fact, on the line L joining any two triangles T4 =
Tj the difference of the respective cubic representations Pj - Pj is a cubic which
vanishes at the two vertices along L . In addition, having specified all first order
derivatives of v at the points, the tangential derivatives of Pj - Pj is zero at
the vertices and hence Pj - P; = 0 on the line L . Observe that the derivative of
Py - Py normal to L also vanishes at the vertices. However, the normal derivative
o} B By is quadratic and one other condition is needed. This condition, which
comes from the centroid, is not the same for the two triangles. Hence the normal
derivative is discontinuous.

assign v ,

To summarize: Let ¢7,...,EN denote the set of vertices of the triangle
Ty1s..-5Tp . Let V denote the set of all continuous functions which reduce to cubics
o} the form (23) in each triangle T3 , 1 < i < M , and whose first derivatives are
continuous at &7,...,5Ny - Then each v € V is uniquely determined by the following
nodal conditions.

i) The assignment of

(v) Sk (£,)
A v B s WE
L9048 ax%yf %

at each vertex ¢, with 0 <a + g <1
ii) The assignment of
Ai(v) = v(ni)

at each centroid Nys Nosooneseny of the triangles T1. S

—_

There are C1 cubics which can be defined in triangles, known as the Clough-Toucher
element. However, their construction requires a great deal of ingenuity. We refer the
interested reader to [12]. A1l the elements discussed in the previous sections may be
found in Figure 3.

3.4.3. Curved Elements (Isoparametric Elements) - In many applications, the necessity
arises for the introduction of elements with curved boundaries. The tool used for this
is known as isoparametric elements. For the sake of brevity, the discussion is limited
to finite elements corresponding to two dimensional Lagrange interpolation elements.

An isoparametric element K [11] may be described as follows. Suppose that there is

= N
i) A set A= U

(a;) of N distinct points of R
7

1

4 ii). A_finite dimensional space v of functions defined over the closed convex hull
K of A with dimension N and such that for every real number a; there exists a
unique v € V with the property that V(ai) = oy 1 <1<\

N
i1i) A set A= U {a,} of N distinct points in RZ

Then the finite element K is the image

K = F(K)

of tiue set K under the unique mapping F ; K - R2 , which satisfies

F(ai) L AT

JA

1 xR (FiRy) = (Ryln0) o (Beinad) &
with Fo(x,y) €V, i =1,2)

N x

Observe that by letting Qi(i i=1 is a basis for V , then the

= 8y 0 tue, (Qi)

mapping F is given by F =

Thus, one may associate with the finite element K the N dimensional space

|
|
|




Veiv:K-R,v=wF ', for all v € ¥}

Note that the restriction to the set K of the trial functions corresponding to a triangu-
lation Ty contalnlng the element K belongs to the space V and v(x,y) = v(x,y) , for

every (x,y) € K , (x,y) €¢ K, veV,and v eV
In practice there are two types of isoparametric elements which are commonly used,

namely the triangular and quadrilateral finite elements. These will be illustrated by
example. The first two examples deal with triangular isoparametric elements.

Example 1: Let A be a non degenerate triangle in R? with the vertices f{a. }3_,
where ajy = (1,0) , ap = (0,1) , a3 = (0,0) . Let V{(m) denote the space_of a]l functions
v which reduces to a polynomial of degree < m in the variable x,y on K . Then for
every number there exists a function ;i € V(1) such that vi(aj) = 8;; . Thus the
isoparametric e1ement obtained is the tr1ang1e J
K = F(K) ,
3
with vertices a; , where F = ] wv.a, , (Figure 4).
i=1
Example 2: Let
2 ox .3 o
A {a;35 U(aij),
where aii denotes the midpoint of the side with the endpoints aj and aj . As before

it can eaSin be seen that there exist ;i c V(Z) such that Qi(aj) Gij
The boundary of the element K = F(k) (Figure 5) in this case admits a parametric

polynomial representation of degree < 2 . 1In fact they are in general arcs of a parabola.

In the special case when the three points aj,24j and aj are on the same line the

corresponding arc is a straight line.

The final two examples deal with quadrilateral isoparametric elements.
Example 3: Let
A= (a5 10,00, (1,00 , (1,1) , (0,1))

It has been shown previously that there exists a basis in the finite element space of
functions which reduce to bilinear functions (Sec. 3.31). In fact,

Vi GGNTD= vy GY) = (-0 (1-y) + vp(ay) = x(1-3)

V3(;(,_;) = ;(.9 ’ V4(;(9.;') = (1';().;'}
Let v = {v|v is bilinear on k},F=(F],F2) i Fy V and F(éj) ray . § =22 3,4
The isoparametric element _K 1is by definition the image under F of K . The restric-
tion of F to a side of K depends only on one variable. Consequently the mapping F
is an affine mapping and the image of K 1is a straight line, (Figure 6a). Thus an
arbitrary quadrilateral may be considered as an isoparametric finite element.

Example 4: Let

A = (a;)j.y = ((0,0), (1,0), (1,1), (0,1), (1/2,0), (1,1/2),

(172, 0)s001/2), (/2,723

It is easily seen that the function (Qi}g with

i=1
vi(x,y) = (1-x)(1-2x)(1-y) (1-2y)

volx,y) = (1-y)(1-2y)%(2x-1)

va(x,y) = x(2x-1)y(2y-1)

va(x,¥) = y(2y=1)(1-x)(1-2x)
ve(x,y) = = 4(1-x)(=x)(1-y)(1-2y)
Ve(x,y) = = 4(1-y)(-y)%(2x-1)
vo(x,y) = ax(1-x)y(2y-1)

vg(x,y) = 8y(1-y) (1-x) (1-2x)




vo(x,y) = 16xy(1-x)(1-y)
form a basis for the finite element space of funcitons which reduce to biquadratics on
K. Let A= {ai)?=] be arbitrary points in R2 and define the mapping F by

-
"
1l o~10

]u,- vi (x,y)a,
Then the isoparametric finite element K 1is given by F(K) (Figure 6b).

Note that the sides of K are parabolic arcs in general. They are straight lines if
and only if three points are on a line, i.e. only if the mapping F is affine.

i

IV. Implementation

In order to clarify the concepts introduced in the previous sections an example of
an application of the finite element method is now examined.

Let o = [0,1] x [0,1] and r its boundary. Consider the problem
-au = f in @ (24)
u=20 on T . (25)

The following steps must be carried through in order to apply the finite element
method.

1) Give an equivalent variational formulation to (24), (25).

2) Define the subdivision of the domain into elements. That is, for each element
give the type of element, the nodes associated with that element, the nodes
relative connectivity, and the type of piecewise polynomial to be used.

3) Form the local stiffness matrix and local right hand side for each element.

4) Assemble the local stiffness matrix and local right hand sides into the global
stiffness matrix and right hand side.

5) Solve the resulting linear system for the coefficients in the finite element
approximation.

Steps (1)-(5) are now applied in detail for equations (24) and (25).
1) For this problem a variational principle was given in section 2. This principle

was find u ¢ H;(Q) such that

a(u,v) = é (g—x% + ﬂ%)dn B gfz (fv)de = f(v) , for all v ¢ H;(Q) 2 (26)

<

As stated in the previous section the bilinear form a(u,v) 1is used to form the stiffness
matrix and the linear functional f(v) forms the right hand side. However, before this
can be done, step 2 of the procedure must be completed.

2) For this problem divide the domain into squares of side h and divide each square
in half down its diagonal to obtain triangles (Figure 7). This process creates two types
of triangles, each with its own local node numbering and local basis functions (Figure 8).
For this problem piecewise linear basis functions have been chosen. The information
needed for each element in Figure 7 is the type of triangle, the nodes in the element,
and finally their connectivity, that is, the global node number associated with the local
node numbers of the element. This information is given in Table 1.

As stated above piecewjse linear polynomials have been chosen as our basis functions.
The approximate solution ul s then represented as

h N
ut(x,y) = 1wy ei(x.y) (27)

i=1

where N is the number of nodes, ¢.(x,y) 1is the piecewise linear function which is one
at the ith node and zero at all othdr nodes, and u; is the value of u at the ith node.

Substituting (27) into (26) and setting v = 6js 3 = 1,...,N , the global stiffness
matrix and right hand side are

A= (ayy) = aleg.05) (28)

F

However, performind the integrations over the whole domain is complex and unnecessary.
The integrals in (26) may be represented as the sum of integrals over each of the




P

elements. Thus, local stiffness matrices and local right hand sides must be computed
for each element.

3) To compute the local stiffness matrix for the mth

element a local approximation
is used. Denote this approximation by

u = ¢ . ﬁ ’ (30)

where ET = (01.02,¢3) are the local basis functions given in Figure 8 and
- U]
u_ = U2
Us [ w
are the values of the coefficients wu;j in the mth element. Note that the subscripts

(1,2,3) represent the local node numbering. Also note that uh s a scalar quantity
and may be commuted with any vector quantity. Substituting (38) into (26) and setting

v = 3 the local stiffness matrix is defined by

X X 3y m’ 3y
m
=(II&L3-T+M-—Q—3-T] o Rw AR
3 IX X Ay 3y “dE m m Un

The elements of the matrix LSm defined by the terms within the integral are

A0. 3¢: 30, 3.
= P N (v i | i, 3
LS4 { % 3y 3y JdE, gt 325, (31)
m

The local stiffness matrix for type 1 and type 2 triangles is given in table 2.
A similar procedure is used to compute the local right hand side, that is

LF = [ (r-dae, . (32)
m

Note Ehag tne integrations in (31) and (32) are actually performed by numerical quadra-
ture [13].

4) The local stiffness matrices and local right hand sides must now be combined to
form the global stiffness matrix and right hand side. This procedure is known as the
assembly procedure. The information needed to carry out this procedure is contained in
Table 1. In order to illustrate how this procedure is carried out the local stiffness
matrices of element 4 and element 10 are assembled into the global stiffness matrix.

To initialize the assembly procedure set all members of the global stiffness matrix A
equal to zero. Checking element 4 in Table 1, it is a type 2 triangle so the local
stiffness matrix (LSp») for type 2 triangles is used. Now, go through each member of LS»
and use Table 1 to find its corresponding place in A . For example, the (2,2) entry in
LS2 corresponds to the (1,1) entry in A. Hence

A(1,1) = A(1,1) + LSZ(Z,Z) =1

Similarly the (2,1) entry of LS corresponds to the (1,2) entry of A . Note that the
(2,3) entry of LSp is matches with the (1,0) entry of A , that is, this entry corresponds
to a boundary node and is discarded.

Checking element 10 in Table 1 finds that it is a type 1 triangle, thus LSy is used.
In this case the (1,1) entry of LS] corresponds to the (1,1) entry of A . So this entry
is added to what was previously placed in A when element 4 was examined, that is

A(1,1) = A(1,1) + LS](I,I) = 1 % 1fe = 3/e

When this process is completed for all the elements the matrix A will be completed (Table
3). A similar procedure is performed to form the right hand side F

5) It is now necessary to solve the linear system that has been created,

Au = F ,

for the vector of coefficients u . Note from the structure of A that it is a sparse
banded matrix. Thus, a sparse linear equation solver may be used. However, one may also
use iteration techniques for such a system. For sparse matrix methods see [14] and for




F

a survey on iterative methods for linear systems see [15].
V. Time Dependent Problems

The formulation of the finite element method in the preceding sections has dealt
solely with stationary problems, that is, time dependence has not been considered.
However, many problems in fluid dynamics do involve time, so it is necessary to see how
time dependence is handled.

By using the method of weighted residuals (or other variational formulations [16])
it is possible to include time dependence in the variationsl principle, thus implying
the definition of finite elements in space-time and basis functions depending on a time
coordinate [17], [18]. However, this approach is seldom applied. Rather, the technique
that is generally adopted for time dependent problems consists in using purely geometrical
elements in the space coordinates and letting the nodal values depend on time. That is,
instead of equation (27) the approximate solution wuh(x,y,t) is defined by

WM(x,y.t) = ig} u;(t) - ey(x,y) (33)
Let Q c R2 and 1 its boundary. Consider the problem
ot Lu = f(x,y,t) in a x (0,T] (34)
u(-,t) =0 on: T x (@,7] (35}
u(x,y,0) =0 in @ , (36)

where Lu 1is a second order operator for which an equivalent bilinear form a(u,v)
exists.

An equivalent problem to (34), (35), (36) is then find wu ¢ H;(Q) x Lp(0,T) such
that

[ 3 - vda +alu,v) = [ fv for all v € Hl(a) (37)
Q
ulxsy-0) = 0 . (38)

1f " s given by (33) and v = ¢j (1<j<N) , is substituted in (37) and (38) then
instead of the usual linear system to be solved the following ordinary differential
equation (ODE) is obtained

du

Mﬁ"’Au

f(t) (39)

u(0) =0, (40)
where A is the usual stiffness matrix, F = [f - ¢.da) , and G(t) is the vector of
coefficients. Q o

The matrix M in (39) is known as the mass matrix and is defined by

Miy = £ o3 + 0jd2 . (41)

The system of ordinary differential equations (39), (40) can now be integrated with the
usual finite difference methods. Before considering one such method note the following:

1) In the usual formulation of ODE's the matrix multiplying the derivative is a
diagonal matrix. However, the mass matrix M in general has the same structure
as the stiffness matrix A . For some sets of basis functions it is possible
(without any loss of accuracy) to perturb the mass matrix so that it is diagonal.
This procedure is known as lumping.

2) The advantage of lumping is that when an explicit method of integration is
chosen there is no need to perform any matrix inversion. However, when an
explicit method is used there is usually a restrictive stability condition of
the form

>3
Lol

g€ s €U,

N

where h 1is an average mesh size. Thus, in general, implicit type methods are
used and there is no noeed to lump.

The method of 1ntegrat10n most Widely used is the Crank-Nicolson method. This method
applied to equation (39

is




. (an:l_-n) s Li";]*ﬁ") 2 g+l pn

or
(M4 52 a™T = m - Bt A"+ 4 (FTTEN) (42)
Note that:

1) The solution of (42) requires the solution of a linear system of equations on
cach step. However, if M and A do not depend on time, then the extra work involved
here is not that great.

2) The Crank-Nicolson method is second order accurate and unconditionally stable.
Therefore, there is no restriction on the size of at

Part Il - Application to Fluid Mechanics

The purpose of this second part is to see how the finite element method is applied
to two problems in fluid mechanics. The first problem to be considered is the two
dimensional boundary layer equations. The reason for examining this problem is to see
how in one particular instance the finite element method may be applied if the equations
are nonlinear. The implementation of the method presented here was taken from Popinski
and Baker [19]. No specific computational results are given, only the implementation of
the method and some general comments on how well the method worked.

The second problem to be considered is one in which there is presently a great deal
of activity. This problem is the solution of the equations of transonic flow by the
finite element method. The major difficulties in solving the equations of transonic
flow are the change of type of the equation, from supersonic (hyperbolic) to subsonic
(elliptic), and the existence of a shock. Many different approaches for the solving of
these problems have appeared recently [20], [21], [22], [23], [24], [25]. Three of
these methods are highlighted here. Those of Chan, Brashears, and Young; Chung and Hooks;
and Aziz and Leventhal.

VI. Two Dimensional Boundary Layer Equations
In this section the implementation of the finite element method for the two dimen-

sional equations of incompressible boundary layer flow with zero pressure gradient is
considered. The boundary layer equations are

Ll AT (e RO T i

L1(u) i X 5 % ay(“ ay) 0 4 in ® (43)
o U, v :

Lz(v) T 3y (2 in @ (44)

where o = [xg,=) x [0,6m] , ém 1is the maximum boundary layer thickness, u and v are the

unknown velocities, p is the constant density, and y = u/p is the kinematic viscosity.

Due to the nature of the equations the x-variable is a marching or time like variable,

and the y variable is a space variable. Thus, it is necessary to specify boundary and

initial conditions for u and v to complete the system. The boundary conditions are
u(x,0) =0

vix,00 =0 L . (45)
%(x,sm) .0

The initial conditions are

ulxgsy) = uo(y)} (46}

Vixgsy) = vo(y)
The method of solution of this system of equations may be outlined as follows:
1) Apply the method of weighted residuals to equation (43) using only one-dimensional
piecewise linear elements (in the y variable) to obtain a system of nonlinear

ordinary differential equations for u

2) Use Crank-Nicolson time differencing to obtain a nonlinear system of equations
to be solved on each time step.

3) Iterate the solution of the above system with integration of equation (44) by the
trapezoidal rule.

In order to apply the method of weighted residuals to equation (43) multiply by a




function y € H‘(O.cm) with y(0) = 0 (denote this space by H! ) and integrate by
parts to obtain the equations

s 8 ~
f LT %% < ydy + [ 2 [v 3% vy o+ VE% %% Jdy = 0 , for all y ¢ H.| . (47)
0 0

The interval [o,5p] is divided into equal segments of length h and piecewise linear
elements are used. Globally the approximations to wu, v, v (uh,vh, uh) are represented

as
B N
¥ = iZ] ui(x)e;(y)
h N
vios Toovi(x)ely) ¥ (48)
i=1
h N
B ’_Z‘ vi(x)e;(y) )
(Note that the yi(x) are known.) However, over the mth element this representation is
ho_ =T o
U = ¢ . QS
k. =T -
Bl E AV e ¢ " (49)
h =F -
2 R
J

- o g u
where ¢ = (o;) is the basis 2f linear functions for an element, and = (u;)m s

v A Y
" (v;)m and v = (y;)m are the values of U;s Vi, vy respectively for the nodal

points of the mth element. Substituting (49) into (47) and setting v = § a local
equation for the mth element is obtained

By (] 85Ty e T o+ s T,
m m
(50)
eiT g 52280 gy .o
T é ¢ 3y 5y )iy =0

m

To help explain how nonlinear terms are handled the first term in equation (50) is
derived. From equation (47) the term to be computed is

h
- h au_dy e = =T 50
fm (hug —5—) =£ (303" < up) (37 2% m)dy)
E m
au
3 Tooy: sTygy 2= o =T - =T m
-ém((um¢)¢¢ Wy == e = 6y (é ¢ ¢ 8 dy) 55—
m

In the Tinear examples studied previously when integrations were performed on a
single element a local stiffness matrix was obtained. The integrals in equation (50)
also represent local matrices. However, the entries in these matrices are vectors. That

is, equation (50) becomes
(Y 1) i
- Th ] 1 o =% - 1 .
Um T2 [ ] 35 Uyt By [ b 1 ] Um
ih
1 %
£0 B )
s R [B M b
B v "

o —

(3
(51)
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Assemblying equation (51) over all the elements a nonlinear ordinary differential equation
is obtained.

du, du, du
[(un-l+un) x ¢ (un-1+6“n+“n+l) o ! (un+un+1) dx

e
b ;?[\Yn-l*yn)un-l = (g ¥ v trap Juy * (Vn+7n+1)un+1] (52)

2
= § ey grivalu, g * (v, y~Vaaqldu, * (Zvn*vn+1)“n+1]

There are several ways to lump the left hand side of (52) (and not lose accuracy) so
that the form of this side becomes

du
i n
an E—;—' (53)
These are
b2
I. ay ° 2(un-IMun"unﬂ)
11, a% = (3u__+6u_+3 _,.)
: n n-1 n “n+l
(54)
3 _
L. o, = (U, %100 9 cq)
(5
Iv. a, = 12un

These formulas are the result of various consistent numerical quadrature formulas.

Applying Crank-Nicolson time integration to (52) (or any of the lumped systems) a
nonlinear equation of the form

i+l i+l =l
au 4+ bnun G dn (5%)
2 i i i+] i+1/2 . <
is obtained. Here, aq, bn, and Co depend on Up s up A and Ve « - hus, 1t is
necessary to obtain v;+1/2 . Noting that
IS [ i+ 2
v = 2(vn . ) + 0(ax“)
v;+]/2 is obtained from
it1/2 _ i+1/2 (PN i i+l
o = Wyt MZaR(E, eyt 4R g e ey (56)

Equation (55) and (56) are solved sequentially in an iterative manner until u;+1
become stationary.

The method described above was programmed, and computations were made on a test
problem which had the Blasius solution. Comparisons of all the finite element methods
were made with the Blasius solution and a second order Crank-Nicolson finite difference
method. From the studies of accuracy based on velocity and skin friction error of these
schemes, it was concluded that the finite element method yields results that are compar-

able in terms of accuracy and efficiency with the results of the finite difference
method.

VII. Transonic Flow

In this final section the solution of transonic flow over an airfoil by finite

elementsis surveyed. Three examples of finite element implementations are highlighted.
The equation that is to be considered throughout is the nondimensionalized small
disturbance equation

L(o) = [1-M2-M2(T4y)0 Jo, + 6y = O (57)

with boundary conditions




p ;
(1 + 3 E% -2 -0 on the airfoil (58)

ay
9
X
at infinit 59
3 . y (59)
ay

where ¢ is the perturbed velocity potential function, M. < 1 is the freestream Mach
number, y is the ratio of specific heats, and g 1is a function of x defining the
geometry of the airfoil.

There are two major problems in the solving of equation (57). The first of these is
the change of type of the equation. That is, if the flow is subsonic (¢x<1) then the
equation is elliptic, if the flow is supersonic (¢4>1) then the equation is hyperbolic,
and if ¢x = 1 then the equation is parabolic. The second problem occurs when the flow
changes from supersonic to subsonic, a shock wave is formed. Each of the methods to be
presented attempts to deal with these problems in a different form. For each of the
methods the infinite domain is made finite by taking an asymptotic solution at infinity
and matching the solution. Let o represent the finite domain and T its boundary

The first method is that of Chan, Brashears, and Young [21], [22]. The first step
in this method is the choice of the variational formulation for the problem. The method
of weighted residuals is used, that is

fL(s) « Kdag = 0 . (60)
Q

However, there is a small variation. The weight function K s chosen so that

L(w)

The variational problem is then to find ¢ ¢ HZ(Q) such that

K

fL(8) « L(y)da = 0 , for all ¢ € H(q) ,
Q

where HZ(Q) is the space of functions with square integrable second derivatives. |

Since L 1is a second order operator it is necessary to chooseCl elements .Therefore,
after dividing the domain into rectangles bicubic hermite elements are used. A nonlinear
system of equations is formed which is solved by iteration.

The method as presented here does not converge. However, with a slight alteration
the method is successful. Consider the rectangular element (Figure 9) with upwind
station I and downwind station II. Before assembling the local stiffness matrix for this
matrix into the global stiffness matrix a check is made of the sign of

c= 1 - w2 M2 (e, . (61)

If C 1is nonpositive for all nodes in the element, the first two rows in the local
stiffness matrix will be ignored at assembly. 1In doing so, the downwind influence on the
solution at the upwind station is properly blocked. On the other hand, if the sign of

C 1is positive at any of the four nodes, no special treatment is performed in the
analysis. This process is analagous to the well known upwind influence finite difference
operator. Thus this method tries to treat the shock wave by a "capturing" technique.

In contrast to the approach of "capturing" the shock presented in the first method,
the second method to be presented attempts to induce explicit shock discontinuities
freely. This method, due to Churng and Hooks [23], acts through a combination of the
variational formulation and the use of a new element.

The method begins with the standard method of weighted residuals. However, at this
point the first change occurs. A quadrilateral isoparametric element is used. This
element is divided into four quadrants. An independent interpolation of a quadratic
basis function ¢ for each quadrant is given. This requires 24 constants to be determined.
Using corner nodes, midside nodes, and center nodes 16 constants are determined. The
remaining 8 constants are determined by allowing jumps in the first and second deriva-
tives of ¢ at the center node. Thus a discontinuity of the type incurred when a shock
wave exists is allowed.

The variational formulation of the problem is now altered so that whenever the
coefficient of a discontinuous function is non-zero the Rankine-Hugoniot conditions are
imposed at that node. This is done through the use of Lagrange multipliers [26].

The method has been implemented on some preliminary test problems. Initial results
are optimistic. However, much work remains to determine the optimal way to handle all of
the options present.
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) The last method to be considered, that of Aziz and Leventhal, is in a ver prelim-
inary stage. This method is based on the work of Aziz, Fix, and Leventhal [27] on
linear mixed hyperbolic-elliptic problems. The idea of the method is as follows. The
function ¢ in equation (57) is a velocity potential, that is, there is a velocity

vector U = (3) such that
¢, = u
o .} ) (62)
] oM

y

Recast equation (57) in terms of u and v

[]-Mi-Mi(1+Y)u]ux +u, =0 (63)

Add to equation (63) the equation

u -v. =0 (64)

and the boundary conditions

(1+u) %% -v =0 on the airfoil (65)
u=v =0 at infinity . (66)

Equations (63) and (64) are denoted as the first order system K(u)

The variational principle to be used is the least square variational principle.
That is, find u ¢ H such that

[K(T) - K(V) =0 for all Vv € H , _ (67)
Q

where H is the set of vector functions whose components are in H1(Q) and satisfy
(65) and (66).

It has been shown on linear problems using linear triangular elements that the
above method is able to handle the change of type from elliptic to hyperbolic very well.
Whether the method is able to handle shocks has not yet been determined. It is possible
that something "special", as in the previous two methods, will have to be done. This
is then the direction that future research must take.

Conclusion

In this paper the foundations of the finite element method and its application to
two problems in fluid dynamics has been presented. In general the finite element method
has been proven to be a very effective method, especially in problems with complex
geometries and boundary conditions. However, much work remains in making the method
more efficient in time dependent problems, nonlinear problems, and higher space dimen-
sions. Also, much work is needed in the handling of shock waves.
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Fig.1 Correct triangulation

Fig.2 Incorrect triangulation
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RECENT ADVANCES IN THE NUMERICAL TREATMENT OF
THE NAVIER-STOKES EQUATIONS

Hans J. Lugt
Head, Numerical Mechanics Division
David W. Taylor Naval Ship Research and Development Center
Bethesda, Maryland 20084
USA

SUMMARY

Some recent developments in finite-difference methods for the solution of the Navier-
Stokes equations are discussed. Emphasis is placed on the computational difficulties
encountered at and near bounding surfaces and in situations of high body acceleration.
Physical and numerical aspects of initial and boundary conditions are considered along
with their influence on the solutions. Slip and nonslip boundary conditions, their
occurrence in reality, their significance in flow modeling, and their effect on the gener-
ation and decay of vortices and vorticity are discussed. Recent studies of higher-order
approximations and the treatment of boundaries of arbitrary shape by body-fitted

coordinate systems are pointed out. The interpretation of time-dependent viscous flows in
various reference frames is difficult and necessitates the careful analysis of velocity
: and vorticity fields. This is demonstrated for flow separation, vortices, and rotating
bodies.
1 LIST OF SYMBOLS
focal distance of ellipse q heat transfer
SR, functions in Eqs. (21) and (23) T distance, r2 = x2 + y2
Cp specific heat Re Reynolds number
C drag coefficient Ro Rossby number = ZUé/dJ'
3 d chord = 2a coshn, or diameter of ¢ time
f a circle T Temperature
E Eckert number u,v velocity components in (x,y)
i+l = Yie1 " Y3 V.,V velocity components in (n,s)
k thermal conductivity vn,vS velocity components in (n,6)
i M, = (32¢/2y?) Tt il , ; :
| i LT U(t) velocity of body (or of fluid far
; n,s intrinsic coordinates away from the body)
| D pressure U constant velocity
; P,0 source functions in Eq. (22) ) velocity of reference frame
| Pr Prandtl number = v/k X5 ¥ cartesian coordinates
i a angle of attack T shear stress
?v 8 coefficient of velocity slip ¢ dissipation
; Y coefficient of temperature slip v stream function
l n,®o body-fitted coordinates w vorticity
I3 curvature Q angular velocity of body
U,V dynamic, kinematic viscosity a* angular velocity of reference frame
o density of fluid

Flow quantities with prime are in dimensional form, without prime in dimensionless.
Subscript 1 denotes fluid condition at the surface, w the condition of the surface.

1. INTRODUCTION

In viscous Newtonian fluid flow, solutions of the Navier-Stokes equations have been
shown to provide an excellent description of fluid motions within the realm of continuum
physics. This has been amply demonstrated at least for laminar flows since the days of
| Poiseuille. Due to their nonlinearity the Navier-Stokes equations have defied solution
| in closed form except for a few simple cases. The advent of powerful computers, however,
‘ has opened the door for the construction of numerical approximations to solutions of

those equations. Still, these solutions have required and do require the full exploitation
| of the latest computer technology, and the successful integration process is an intricate
| interplay between numerical analysis and computer capacity, that is, there is a compromise
| between accuracy and computer time and storage available. (This interplay is underlined
by the fact that general solution recipes are not available and for reasons of economy
often not even desirable.) Thus, the evolution in numerical fluid dynamics is synchronous
with the rapid advancement in computer science and technology. This fact is reflected in

|

|
|
|
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recent publication patterns. Lasting textbooks are almost impossible to write; the few
books [1,2,3] entering the market quickly become dated, and the main source of information
are articles and reviews in journals and conference proceedings. Some reviews and
proceedings are cited in [4 through 9].

Today fairly complicated time-dependent flows in two space dimensions (plane or axi-
symmetric) can be simulated on computers, although these are restricted to moderate
Reynolds numbers. Simple three-dimensional flows can now be handled with fourth-
generation computers such as the CDC STAR, the TI-ASC, and the ILLIAC IV. The Reynolds-
number restriction placed on current simulation is very severe. However, useful applica-
tions of numerical techniques are now possible in the areas of biofluiddynamics and
lubrication with nonzero Reynolds-number flows.

This lecture is not so much concerned with discussion, comparison, or enumeration of
various methods for discretizing and solving the Navier-Stokes equations. Rather
emphasis will be placed on problems arising from and new techniques for the application
of initial and boundary conditions which together with the flow parameters define a
specific problem. In addition, some thoughts are given to the interpretation of viscous
flow patterns.

For this survey certain restrictions are imposed on the physical model and the numeri-
cal approach. The motion is assumed to be two-dimensional in space since with todays
available computers numerical techniques find their broadest application to such flows and
since this assumption conveniently simplifies explanations. The fluid is considered
incompressible, homogeneous, and Newtonian. Furthermore, the Navier-Stokes equations are
written in the vorticity-stream function formulation because it appears to be a natural
choice for a number of reasons [3]. After all, the diffusion and convection of vorticity
defined by & = curl v are the controlling processes in viscous incompressible fluid flow.
As a result of the assumption of incompressibility the flow field can be computed
independently from the temperature field. Then, the basic equations in cartesian
coordinates and in dimensionless form are:

dw dw dw 1

= Ll S = = g2 2
5T 23x Y iy ke LU (
92y = w, (2)
aT 3T o R 2
oE Tl o kY 3y - PrRe VT + Eo; (3)
with u = -a3y/3y, v = ay/ax, v2 = 32/3x2 + 32/ay2, ¢ = 2[(3u/3x)2 + (3av/ay)?]
+ (3v/3x + 3u/3y)?, and with proper initial and boundary conditions. For the numerical
approach finite-difference and related techniques are assumed although the physical aspects

and many numerical considerations are independent of the special type of discretization.
Note that finite-element methods and discrete vortex techniques are covered in the other
lectures.

2. BOUNDARIES OF A FLUID

2.1 Boundary conditions on solid and fluid surfaces

In order to solve the differential equations of motion, initial and boundary conditions
must be prescribed. Together with the flow parameters Re, Pr, etc., they define the
problem under consideration. Boundaries separate a fluid from its surrounding, being
either a solid or another (inmiscible) fluid. The kinematic condition for the location of
the boundary, which is considered to be at rest, is the vanishing of the velocity compo-
nent normal to the surface. In addition, the tangential velocity component or some
equivalent must be prescribed (dynamic condition). In general, a fluid adheres to a
boundary; that is, the tangential velocity component is zero (nonslip condition). However,
slip may sometimes occur. In rarefied gases, a certain flow regime can be described with
the Navier-Stokes equations and slippage [10]. For Brownian motion slip provides better
agreement with experiments than nonslip [11]. Also in non-Newtonian fluids, the concept
of slip enters [12]. Besides these examples, slip can be useful in flow models where it
may be labeled as "pseudo-slip" [13]. Examples are viscous surface waves for which the
"perfect slip" condition t;= 0 can be applied [14]. Flow over porous walls behaves as if
under slip [15]. The description of an interface between two fluids in contact with a
solid surface requires the slip concept [16].

Conditions on the tangential velocity component at the boundary cannot be found
within the realm of continuum physics and must be obtained either from experimental data
or from molecular theories [17] where the consideration of nonequilibrium thermodynamics
is helpful [18]. Based on gaskinetic ideas the following conditions for the tangential
velocity component vg and the temperature T in intrinsic coordinates n,s (see [18]) with
n = n; being the surface are given [17]:

S(vs)1 = 1, velocity slip, (4)

y(T; - Tw) = q,, temperature slip. €S)

g = » is nonslip, 8 = 0 is perfect slip. The latter condition must not be thought of as
yielding potential flow which is defined by w = 0. A comparison of t and w in intrinsic
coordinates show that even for perfect siip vorticity can be produced at the surface:




if '/ = -ng/an' - KV; =0, u#0 (6)
then o' = -av;/an' + ‘Vé (7)

will not equal zero in general. Two examples are given in Figs. 1 and 2. For the flow
past a thin elliptic cylinder the difference between nonslip and perfect slip is small
since most of the vorticity is produced near the edges where « is large. However, in the
case of the fluid motion around a sphere « is relatively small. Here, nonslip causes a
recirculatory wake, perfect slip does not.

For the numerical representation of the boundary conditions it is useful to distin-
guish among conditions at a solid or fluid surface, at lines of symmetry, and around an
infinite region. Lines of symmetry do not cause numerical difficulties. If they are part
of the boundaries of a doubly-connected region one value of the stream function must be
determined (see section 2.3).

Solid or fluid surfaces and their vicinity are of utmost importance to the flow
behavior since in general the largest gradients of the flow quantities occur there [3].
It is important to remember that the vorticity is produced at the surface as required to
satisfy the boundary conditions. Also, calculation of drag and heat transfer require the
knowledge of (3w/%n); and (3T/sn), . For accuracy a high field resolution is necessary
and can be obtained by the use of a finer differencing grid near the surface. Similar
accuracy may be obtained with a uniform grid but a higher-order scheme.

Finer grids can be accomplished by a “hybrid" network; that is, by combining grids
of different cell sizes and shapes [23,24], and by coordinate transformations. The
elliptic-hyperbolic system

x + iy = a coshfn + 16), a > @ (8)

used in the calculation of Fig. 1, has in the physical plane finer grids near the tips of
the ellipse. In general, each coordinate can be stretched with any suitable function; for
instance, it can be stretched with the e-function [25], the sin-function [26], or

Re-1/2 perpendicular to the surface [27]. Care must be taken to avoid singular behavior
due to mapping. Coordinate transformations for arbitrarily shaped boundaries are discussed
in section 2.3.

A multitude of various schemes for approximating the boundary conditions and their
accuracy, and influence on numerical stability has been summarized and discussed in [3],
and also in [28]. At the boundaries prescribed conditions must be satisfied which might
not be consistent with one-sided approximations of the boundary conditions. An example
shall illustrate this situation. For simplicity cartesian coordinates are used with
y =y, forming a straight boundary line. The notation is displayed in Fig. 3. From the
Taylor expansion (the subscript j is omitted)

b2 = (39/3y)1 by + 3 (3%4/3y2)y (8y)2 + O(sy)? (9)

with u = -3y/3y and y3 = 0. From the corresponding expressions for ¥3; and v, and from
the fact that w, = (32y/3y2),, one arrives at the surface vorticity

wp = (W2 *+ 4v3 - ¥y)/4(8y)2 + 3uy/28y + 0(ay). (10)
By assuming the slip condition (4), Bu; = w,, it follows that

w1 = (b2 + 4u3 - 9)/20y (28 - 3) + 0(ay)? (11)
and for nonslip, 8 = =:

wy = (w2 * 4y - v,)/4(sy)2 + 0(ay). (12)

Notice the difference between Eqs. (11) and (12) in the order of accuracy. The slip
condition immediately gives

up = (w2 *+ 4y3 - vy)/ 28y (288y - 3) + O(ay)2, B < =, (13)

whereas from the one-sided scheme Eq. (9) for y, and a similar expression for y; one
obtains

up = (v3 - 4y,)/2ay + 0(ay)?2. (14)

Although both approximations are of the same order the difference in the result can be
drastic [22]. Clearly, Eq. (13), which contains the exact boundary condition Bu; = wp,
must be preferred over the approximation Eq. (14).

Recently, higher order approximations for discretization schemes (in the entire
domain of integration) have become the focus of attention. A few are mentioned: Fourier
series and other series methods [29,30] a class of techniques labeled as 'compact,"
"Hermitian" or 'Mehrstellen" differencing [31,32], and spline-interpolation techniques
[33,34,35]. All these approaches can incorporate boundary conditions and evaluate field
data at the boundaries more easily and more accurately than the one sided finite-
difference schemes. Polynomial splines are not only advantageous in many respects
(according to Rubin and Khosla their use saves considerable storage and computer time,
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Figure 3: Notation of grid
points near a surface.

and their accuracy is less sensitive to non-uniform grids), they also serve as a unifying
concept for discretization. As was shown by Rubin and Khosla [35] finite-differences are
identical with quadratic splines and Hermitian discretization can be derived from poly-
nomial splines.

With spline approximations boundary conditions can be incorporated in an unambiguous
way. The example Eqs. (9) through (14) is treated with cubic splines as follows. For
the interval [Yi’yi+1] the stream function is required to be

-y)3 = 3 2 =
VAV =M (yi+1 y) oW (y yi) * oM hi+1) Yis1 *Y
. S TR o T TPTIER L B o LA e
h? y =Y.
i+l i
LT T T R s Tyl (15)
where M, = (azd/ayz)i is obtained as part of the solution and h, ; = v, Y The
surface vorticity is then with Bu; = w 4
- 38 v2  he ‘
My = w; = 3+8h, (H; gy M;) (16)
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While Eqs. (16) and (17) are algebraically exact and follow unambiguously from Eq. (15)
it should be noted that as a result of the cubic spline approximation

Mi =(32w/3y2)i oo(ha) and in terms of ¢ Eqs. (16) and (17) are of O(h}) and o(hgj
respectively. u, can be expressed in a corresponding way. Details of the procedure are
the (w,y)-formulation are given in [33].

2.2 Boundary conditions at infinity

Boundary conditions around an infinite fluid region pose a particular problem as only
a finite domain of integration can be considered numerically. The transformation of the
infinite region onto a finite one does not resolve the problem. Upstream and sidewise
conditions are usually easy to handle because disturbances damp out fast (except for wave-
type propagation in stratified and rotating systems). The influence of those conditions
at various distances away from the source of disturbance on the solution was studied in
[36,37]. Downstream, however, disturbances may generate such long wakes (for instance,
Karman-vortex streets) that the boundary conditions affect the shedding of vorticity.
Obviously, w = 0 would be a very distorting condition. The principle difficulty of
setting downstream boundary conditions across a wake lies in the fact that the boundary
data are part of the solution and thus not known a priori. As a general approach to the
generation of downstream boundary conditions one should use physical insight into the
nature of the flow at the boundary, and sensibly simplify the equations of motion to a
form which may be used as boundary conditions. A number of less restricting conditions
than w = 0 are listed in [3]. Thoman and Szewczyk's condition [23] 3w/3x = 0, 3v/sx = 0
(with the x-direction parallel to the flow) is mentioned. The physical interpretation
causes difficulties [38]. Dawson and Marcus ([24] allowed the vorticity to be convected
downstream in a parallel flow. This idea was extended by Lugt and Haussling [39] to allow
convection of the total flow pattern (w and v):

@
g

Jw

et U= 0, (18)
v v _
5t U e 0. (19)

The author considers these conditions not very restricting. An interesting idea was
forwarded by Wu [40]. With the aid of an integro-differential formulation, he restricts
the computation essentially to the area of nonzero vorticity (which can be much smaller
than the total region of integration). He then extends this area with advancing time by
following the growing wake (after the start of a body from rest). Still, for long wakes
the integration area can become intractable.

2.3 Treatment of boundaries of arbitrary shape

In many practical applications of numerical fluid dynamics the shape of the boundary
can only be approximated mathematically, may be time-dependent, or may even not be known
a priori. Examples are ship waves, flexible surfaces through fluid-structure inter-
actions, and parts of machinery moving relative to each other. Even on a simple flat
plate edges are present which constitute mathematically singular boundary points.

In general, singular boundary points do not cause numerical difficulties since they
are confined locally. Two examples are given. At the edges of an infinitesimal thin
plate viscous fluids behave such that p, and w; become unbounded according to r-!/2 when
approaching the edges [41], Fig. 4a, no matter whether the fluid separates or not. r is
the distance from the edges. Integration of p; and w; over r results in finite values
(provided r < =), and thus in bounded drag and 1ift. The numerical calculation of the
neighboring flow field can be carried out with sufficient accuracy. Whether or not a grid
point is located at the singular point depends on the discretization scheme ([3,36,42,43].

In the second example, a cover rotates relative to the container wall without a gap,
Fig. 4b. The shear stress is proportional to r-! [26]. Although this singular behavior
is locally restricted and does not invalidate the overall flow field, the torque (as an
auxiliary quantity) is logarithmically infinite.

Although the boundary conditions of free surface waves (for instance ship waves) are
known, the location of the wave surface itself is part of the solution. The kinematic
boundary condition requires that the surface moves with the local fluid velocity. If the
surface is defined by x = x(s,t), y = y(s,t), the condition reads

3
u= 3% (s,t), v = 2L (s,1). (20)

The dynamic boundary condition postulates continuity of the normal and tangential stress
across the surface [44,45]. For water waves with air above, this condition can be
reduced to constant surface pressure and vanishing surface-shear stress. The latter one
is the perfect-slip condition.
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Figure 4: Examples of singular boundary points. (a) Flow around
the edge of an infinitesimal thin plate, with and without
separation. (b) Relative motion between cover and container
wall without a gap.

The numerical treatment of surface wave-boundary conditions is mathematically
difficult, even for potential flow [46]. For viscous fluids the treatment used in the
Marker-and-Cell method in its latest version, SOLA-SURF [47] is reasonably successful.
In general, the problem of free-surface waves calls for more intensive investigation.

For high accuracy near the surface it is advantageous to have a body-fitted
coordinate system (see section 2.1). In the last decade numerical methods have been
developed which permit the transformation of an arbitrarily shaped boundary in the
physical plane (x,y) onto the rectangular mathematical plane (n,6). In addition to the
desirable high resolution the application of certain integration techniques like the fast
direct Pcisson solvers necessitates a certain regularity of the grid. These methods,
which are connected with the names of Buneman, Golub, Buzbee, Hockney et al. [48,49,50],
are very powerful in solving the Navier-Stokes equations efficiently when applied to the
Poisson equation for y. In fact, certain problems could only be solved within a reason-
able amount of computer time with the aid of these methods [51]. At present, only those
coordinate transformations (x,y) » (n,8) can be used which yield a separable elliptic
differential equation of the form [52]

8 a‘:vl'

a(e) ey

scn) 2 v d(e) v e(n) 2L+ (£(8) +g(n)]y =uln,e), ac > 0. (21)
an 38 an

This class of transformations includes any conformal mapping as a subclass. An example

is Eq. (8). Work is going on to extend the range of application for fast Poisson solvers
beyond the class represented by (21). In this context it may be noted that a fast fourth-
order Laplace solver developed by Ohring [53] for three-dimensional potential flows may

be applicable for Eq. (2) under the restrictions of An = A8 and conformal mapping.

For simply-connected regions these body-fitting methods have been studied by
Winslow, Barfield, Chu, Amsden and Hirt, and Godunov and Prokopov (see [54]). This
work has been extended recently to multiply-connected regions by Thompson et al. [54,55]
and Ghia et al. [56,57,58]. The latter group has improved the computer efficiency of the
coordinate-transformation program by the increased speed of convergence due to the use of
the ADI method, employing simultaneous solution of the coupled Poisson equations (22
below during each step of the ADI scheme. Additional improvements are in progress
(according to a private communication with Prof. U. Ghia). A brief outline from [55] is
given:

The coordinates (x,y) and (n,8) are coupled with each other by the generating
elliptic system

@
+

-]
o

Pi(ny9},

Q(n,8).

3
+
3
n

Since the computations shall be carried out in the (n,8)-plane, the dependent and indepen-
dent variables in (22) must be interchanged:

32x 32x 3 32x 3
a3 -20 25 4¢3 % g2 Xp, Xy
36 383n 3n 36 an
(23)
42y 32y 32y - ay
a2 - 762t +citae g2 Lpw il
th 1890 an? 38 an
p X2 Y - axX 3X Ay 3y X2 AY~2 axX 3y aX 3y
i = —)l # 2)4 Bl > = el - 3 e SRR S o
with a (wq) ('.f,) » b 306 an il 38 © (‘,n) * ()sz_)[ #i " 30 an an 38

Dirichlet (or Neumann) boundary conditions for x and y are prescribed and then (23) solved.
}bc %rld in the physical plane may change with time whereas the (n,8)-grid can be kept
ixed.
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The simple mapping Eq. (8) transforms an ellipse in the (x,y)-plane onto a
rectangle in the (n,6)-plane. If a higher resolution of the surface is desired a doubly-
connected region may be used. Fig. 5. In this figure an example from biofluiddynamics
is selected. The circle (representing the ball) degenerates to a double line in the
(n,8)-plane. This arrangement provides more coordinate lines around the circle normal to
the solid surface. If one wants higher resolution around the circle with regard to more
parallel lines, the imbedding of an additional grid can be made. Fig. 6.
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Figure 5: (a) Body-fitted coordinate system for the meridional plane
of part of the aorta with caged-ball valve prosthesis. The blood
flows from the left heart chamber on the left toward and around
the ball which is oscillating horizontally according to the rhythm
of the heart. The amplitude of the ball oscillation is given
through the positions of the orifice and of the cage of the
prosthesis (which is not modeled here). (b) Grid in the (n,8)-
plane. The computations were performed with the technique
described in [54]. P =Q = 0.

For the purpose of solution, the stream-function vorticity form of the Navier-
Stokes equations transforms to

& 2 2
- 2 B O e T Tk B R - VAL L (24)

an 36 36 an 362 363n 3n2 3

(25)
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Figure 6: The same situation as in Fig. 5 except for additional
spacing arrangement around the ball (suggested by Professor
J. F. Thompson). P =Q = 0.

7 3 ;
where d = (%% Dy - %% Dx)/J, e = (%§ Dx - §§7Dy]/1, and the functional
) 32 e LOI2 32 ' o 5 :
DE d — - b + € > . The boundary conditions at the surface for nonslip are
28 363n an<
v = const, Yc/J aw/3n = 0. (26)

Eqs. (24) and (25) are more complicated than the original Eqs. (i) and (2). This dis-
advantage, however, is far outweignted by having a steady, simple grid. Fqs. (24) and
(25) are only valid for plane motions, not for axisymmetric ones.

The example in Fig. 5 is of interest in three other respects: (1) the region is
doubly connected, (2) the aortic wall may be sonsidered flexible when interacting with
the fluid, and (3) the surfaces touch and separate in each period of oscillation.

(1). 1In multiply-connected regions the constant value of ¢ in (26) is different on
disconnected surfaces. For instance, in Fig. 5 ¢y can be set equal to zero along the
aortic wall boundary and equal to B(t) on the circle. (This holds for the axisymmetric
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problem. If the problem considered is planar, the ¢-values for the upper boundary A, -A,

and the lower boundary A,-A; differ.) However, B(t) may not be known and may have to be
determined with the solution. A procedure for this is described in [59].

(2). On the flexible aortic wall the same conditions apply as for the free surface
of two inmiscible viscous fluids. See Eq. (20) and subsequent text.

(3). Separation and touching of two or more surfaces are described by the accelera-
tion process involved. Discontinuous movement of the surfaces (in the velocity or the
acceleration) requires special care in the numerical simulation. This is discussed in
the next section.

3. INITIAL CONDITION AND MODELS FOR ACCELERATION

The initial condition specifies the state of the flow field at a certain time t = ty
from which the flow field with prescribed boundary conditions develops. The instant ty
may mark the beginning of motion or may occur later at any other time. The flow field
may be continuous or discontinuous (as the beginning of motion) in time at t = t,. The
start of motion is chosen to be at t = 0 without loss of generality.

Any nonanalytic behavior of the initial condition is determined by the selection of
the acceleration model. Depending on which time derivatives of the flow quantities are
discontinuous, three cases are considered. They cover all possible models for numerical
computations. At t = t, the discontinuity may occur in the

(1) velocity: W)
(2) acceleration: du/dt(t)
(3) rate of acceleration: d2?U/dt2(t)

(1) In almost all acceleration models described in the literature the abrupt start
of a body from rest to a constant velocity is simulated. This is mathematically equiva-
lent to a discontinuity in U(t). The acceleration dU/dt is therefore a 5-function, and
drag and 1lift are infinite at that instant. Numerically, the potential-flow solution in
the interior of the flow field is prescribed, as well as the dynamic boundary condition
of the viscous fluid at the surface. This means that an infinitesimal sheet of vorticity
exists at the surface. The subsequent spreading of vorticity (see Fig. 1) requires small
time steps At although errors remain near t = 0 due to the inability of the numerical
scheme to resolve very thin boundary layers. However, a comparison with series expansions
for the elliptic-cylinder problem by Staniforth [60] shows that the inaccuracy is con-
fined to a limited time span near t = 0.

(2) An acceleration model in which dU/dt is discontinuous has been used recently by
Collins and Dennis [61]. Examples for boundary layers can be found in [62]. If the
acceleration period lasts from t = 0 to t = 1, the acceleration is

0 for t 2 @,
du

a? = l/T gist = ¢ , [:-l
0 A
Discontinuities occur at tp = 0 and t. At ty = 0 the fluid is motionless with w«; =0 but
there exists a discontinuity sheet for the vorticity flux (3w/3n);. As in case (1) errors

in computing the flow field occur near tp = 0. Calculating the force, however, will lead
to grossly inaccurate values. This can be avoided by incorporating the boundary-layer

solution [63]. A similar situation must be overcome when tg = 1. A new vorticity sheet
is introduced. The resulting new boundary layer grows in a rotational rather than in an
irrotational flow. As was pointed out by Taneda [64], the flow at ty = t consists of the

superposition of the already existing rotational flow field and the irrotational flow
field resulting from the abrupt change in the acceleration. Again, the boundary-layer
solution can be incorporated as in the situation at ty = 0. This was done in Fig. 7b
only for the calculation of the drag coefficient but not for obtaining the flow field.

(3) For the linear acceleration described by

0 for t < U
2 < <
au g it/ 0.5t 8 2f2, (28)
dt -4(t-1)/12 tfd <t S e,
0 3 2 A
the flow field at t, = 0 is motionless with w; = (3w/3n), = 0. This instant, as well as
those at t, = t/2 afld © when d?U/dt? is discontinuous, do not cause any numerical

difficultids [63].

For comparison the drag coefficient defined by Cp = drag/é~oué d for the three cases

is plotted against t in Fig. 7, with the flow situation of Fig. la. Care must be taken
when selecting the reference frame for computing the drag [63]. A discussion of this
problem and experimental data are given by Sarpkaya [65].

o
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tion. From [63].
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4. INTERPRETATION OF FLOW PATTERNS IN VISCOUS FLUIDS

With the possibility of solving complicated flow problems numerically, difficulties
in interpreting time-dependent flow patterns can arise. This may even occur in two space
dimensions, let alone the three-dimensional domain where the situation really becomes
complicated. Steady motions imply the Eulerian form of flow description and the selection
of one specific reference frame; that is, the reference frame for which the flow becomes
steady. In this steady-state system streamlines, pathlines, and streaklines coincide.

In truly unsteady flows no preferred reference frame exists, and the frame must be
selected on the basis of other criteria. Streamlines, pathlines, and streaklines in
general no longer coincide. In this text, the discussion is restricted to two-dimensional
flows, and three phenomena are described: separation, vortices, and various reference
frames for rotating bodies.

4.1 Flow separation

In general, flow separation may be defined for steady motions if a body streamline
detaches from the surface, or more accurately, if it bifurcates. Two types exist: flow
separation which is simply enforced through the conservation of mass and which can occur
also in potential flow (see Fig. 10b), and flow separation due to a separating vorticity




layer from the surface. The first type of separation point is often called the point of
detachment, while the second type is usually meant when one speaks about flow separation.
In steady motions it is defined by (see [62,66])

3
t=0, v. >0 or w =20, =& )

n is ' L

where the second definition is also valid for perfect-slip boundary conditions [21].

This definition no longer holds in unsteady flows. To understand the flow behavior,
a reference frame is sought in which the motion becomes steady with respect to the
separation point, at least locally. There, streamlines (and pathlines) do not change very
much in time. In Fig. 8 such a change of the reference frame is shown. One immediately
recognizes that in the steady frame a parallel flow exists adjacent to the surface, and
that the bifurcation point is inside the fluid.

i

Figure 8: Streamlines near a separation point. (a) The surface is
fixed, and the separation point is moving with speed -U to the
left. The flow is unsteady. (b) The reference frame is now
fixed to the separation point by superposition of U on the flow
field. The surface moves with speed U. The flow is steady, at
least in the vicinity of the separation point. From [67].

Moore, Rott, and Sears [67] have suggested the following criterion for flow separation
in a boundary layer:

v

=5 = 0 atwv. =0. (30)
in s

A formal definition for solutions of the Navier-Stokes equations has apparently not yet
been found.

4.2 Vortices

A similar difficulty is encountered if one tries to define a vortex in unsteady flows
[68]. Generally, a vortex may be described as the circulating movement of fluid elements
around a common center. To transform this description of a household word into an exact
mathematical definition, however, is another matter.

The textbook definitions are usually too restricted. Here are some examples: (1) The
potential vortex is not applicable to viscous fluids. (2) Vorticity at a point in space
does not constitute a vortex. A parallel shear flow has vorticity but is not a vortex.

(3) An extremum of vorticity in viscous fluids indicates a vortex but is not necessarily
one. Any nonconservative force acting on the fluid may produce local extrema, for instance
in stratified fluids. Also, recirculatory regions at surfaces would be excluded from

being vortices since their vorticity has its extremum on the surface (Fig. 1). (4) Closed
streamlines do not necessarily represent vortices in unsteady motions. Streamlines are

not invariant with regard to inertial transformations and certainly not for rotational
ones. Fig. 9.

As in the case of unsteady flow separation a reference frame must be found that is
at rest relative to the vortex center. This can be done iteratively by checking the path-
lines or a time sequence of streamlines. When closed or spiralling pathlines are found,
these patterns then constitute a vortex.

4.3 Rotating bodies

The simplest case of a rotating body in two dimensions is that of a cylinder rotating
with constant angular velocity - Q in a fluid at rest at infinity. Fig. 10a shows the
instantaneous streamlines of a potential flow around a rotating cylinder with an elliptic
cross-section. This flow is unsteady. By superposing the rotation o the flow becomes
steady (Fig. 10b). The flow patterns reveal now two recirculatory regions (or vortices
according to section 4.2) which are not visible in Fig. 10a. The closed streamlines
within these recirculatory regions do not contradict a theorem for potential flow that in
a simply-connected region closed streamlines cannot exist [44]. In Fig. 10b, a rotation
© with constant w/2 is superposed!




Figure 9: On a vortex (a) a constant parallel flow from right to
left is superposed. This is equivalent to a reference frame
moving relative to the vortex. In (b) the velocity of the
parallel flow is small relative to the tangential velocity
of the vortex; in (c) the velocity of the parallel flow is
large.

Figure 10: Potential flow around a rotating thin elliptic |
cylinder. (a) The reference frame is fixed to the fluid at
rest at infinity. The flow is unsteady. (b) The reference
frame is fixed to the body. The flow is steady.

The situation becomes more complicated if a cylinder rotates with constant - Q@ in a
parallel stream with U.. Then, no steady state exists. Four different frames may be
distinguished. When % and o* are the translational and angular velocities of the body
relative to the reference frame, these four different frames are:

(1) U* =0, 2* # 0: the frame is fixed to the body with regard to translation; but
the body rotates relative to the frame.

(2) U* # 0, o* # 0: the body is in translational and rotational motion relative to
the frame. For U* = -U and 2* = -Q the frame is fixed to the
fluid at rest at infinity.

(3) U* =0, o* = 0; the frame is fixed to the body.

(4) U* # 0, o* = 0; the frame does not rotate relative to the body; but the body
has a translational motion relative to the frame.

The behavior of streamlines for the four different cases is illustrated in Figures
11 and 12. For nonvanishing U* and 2* these quantities are chosen to be U* = -U and
¥ = -q. Since the streamlines are not invariant, all patterns differ from each other.
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FRAME 1

o

FRAME 2

FRAME 3

FRAME 4

Figure 11: Potential flow around a rotating thin elliptic cylinder
with translational motion in four different reference frames.
Ro = 0.5, a = 45°. The flow is unsteady.
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1
Figure 12: Streamline patterns of a viscous fluid flow in four
different reference frames. Re = 200, Ro = 2, a = 30°,
t = 10.46 after the abrupt start from a vertical position.
From [51].
By contrast, the vorticity field in Fig. 13 is invariant and differs under rotational
transformations only by a constant. The superiority of the vorticity field over the
streamline patterns for explaining flow behavior is clearly demonstrated.
5 Figure 13: Equi-vorticity lines
for the flow situation of Fig. 12.
From [51].
=3 \
E
For interpreting the patterns of Figs. 12 and 13 the discussions in section 4.1 and
1.2 may be consulted. For example, the separated vortex one plate length behind the
body is seen in Frames 1 and 2 as closed streamlines, and in Frames 3 and 4 as wavy stream-
lines. Hence, the vortex is moving relative to Frames 3 and 4, but not (or only slowly)
i to Frames 1 and 2. The closed streamlines in Frames 3 and 4 are due to the rctation of
! the frames and are circular at infinity. The center of rotation coincides only with the
| rotation center of the body when the translational motion vanishes (Fig. 10b). Details

are given in [51].
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NUMERICAL TURBULENCE MODELING
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SUMMARY

Although even the largest and fastest electronic computers are incapable of numerically evaluating
the details of the smallest scales of turbulence in an entire flow field, their computational power is
sufficient to permit "modeling" turbulence with detail that was impossible in the past. Descriptions are
given of the underlying bases and developments in two techniques of detailed turbulence modeling where the
flow is treated in the Eulerian sense, and one technique where the Lagrangian motions of vortices are fol-
Towed. First, a technique is described for solving the single-point statistically averaged conservation
equations. The Reynolds stresses that appear in these equations are evaluated by solving supplemental
differential equations which contain terms that are "modeled." A sequence of increasingly complex, but
also increasingly general, modeling equations is described and computations based on these equations are
compared with experimental data. The hierarchy of models described terminates with equations for the indi-
vidual components of the Reynolds stress tensor. The second Eulerian technique approach to turbulence
modeling is the direct numerical simulation of turbulent fields. In this approach, all three-dimensional
eddies between a predetermined range of sizes are computed in time within a specified volume of flow.
Present-day computers require a tradeoff between the size of the volume that can be considered and the
degree of resolution of the turbulent eddies. Techniques of "modeling" the smallest eddies are described
that permit enlarging the volume, or Reynolds number, that can be considered. Computed results and
experimental data are compared for turbulent flow fields at Reynolds numbers of aerodynamic interest.
Finally, developments in the Lagrangian technique whereby a turbulent flow field is treated as a finite
number of ring vortices whose motions and distortions are followed in time and space are described.

NOMENCLATURE
AS surface area of aerodynamic body k kinetic energy of turbulence per unit of
mass
y van Driest damping function
L length of aerodynamic body
a modeling constant (ARAP model)
L Glushko length scale
B constant in "law of the wall"
L Ng-Spalding length scéie
b modeling constant (ARAP model)
L1585 length scale of turbulence
C modeling constant
L mixing length
CF average skin-friction coefficient
1 N number of mesh points
€15y
n normal vector
CpsCq
NS Navier-Stokes equation operator
cm.cp
P averaged pressure
c
P9z , modeling constants Prt turbulent Prandtl number
c
s p static pressure
cpvl
q characteristic turbulence velocity
c
i aj heat transport by molecular processes
G sC
W Ry 5 Reynolds stress
D diameter of sphere J
ReL Reynolds number based on length L
E Jones-Launder dissipation function
ReT turbulence Reynolds number
Eyy one-dimensional spectral energy function
r turbulence Reynolds number, Eq. (76)
E three-dimensional spectral energy function
LS modeling constant
f function
s Kolmogorov microscale of length
G filter function
SR surface roughness parameter
H GTlushko turbulence Reynolds number function
Sij velocity strain tensor, ref. Eq. (7)
h static enthalpy
S skewness
k wave number
t time
k2 wave number vector component
" time
kg Kolmogorov wave Aumber
| averaging period




u friction velocity, Aer/p K von Karmdn~ constant

u; velocity vector component in ith direction modeling constant or Taylor microscale
Ui filtered (averaged) velocity vector com- A ARAP length scale
ponent in ith direction
u viscosity of fluid
u velocity vector
v kinematic viscosity of fluid
v velocity
i Cole's wake function parameter
Vi filtered velocity vector component in ith
direction E* mass-weighted average modeling constant
Vi time derivative of V, £ coordinate
Vi velocity vector component in the ith 0 density of fluid
direction
o modeling constant
W dissipation rate in compressible Wilcox~
Traci model 929, modeling constant
X; coordinate vector, ith direction cE,c* modeling constant
X,y coordinate normal to a surface 7 surface shear
a,a* ;i‘ molecular stress tensor
modeling constant J
BsB* w Saffman-Wilcox dissipation rate
Y constant in Gaussian filter w vorticity vector
Ash computational mesh dimension (%) statistical or time average
Bpst characteristic filtering dimension Subscripts
s boundary-layer thickness (.)s () vector quantity
Il boundary-layer displacement thickness e boundary-layer-edge condition
Gij Kronecker delta w property at surface
€ eddy diffusivity Superscripts
3 kinetic energy per unit mass dissipated + “Taw-of-the-wall" coordinate
by turbulence
M averaged quantity
€44k alternating tensor
J € ) fluctuating quantity
g mass-weighted average modeling constant s
() mass-weighted averaged quantity
n coordinate
i i mass-weighted fluctuating quantity
} boundary-layer momentum thickness .
() time derivative
INTRODUCTION

It is generally accepted that the dynamics of a fluid at a point in space away from a discontinuity
such as a shock wave is well represented physically by the Navier-Stokes equations. For compressible
fluids, these equations must be supplemented by a continuity equation containing a variable density and an
energy equation. These equations are second-order, nonlinear partial differential equations that can be
solved analytically for only a few simple flows. Most technologically important flow fields are turbulent
and are much too complex to lend themselves to these analytical methods. The solution of turbulent flow
fields, then, must be accomplished through numerical analysis.

Turbulence can be thought of as the time-dependent solution of the continuum Navier-Stokes equations
resulting from all the nonlinear processes that reflect the instabilities within the equations and the
disturbances that existed initially within the flow field or that were impressed at its boundaries. Thus,
turbulence is a property of the flow field and depends only secondarily on the property of the fluid
itself. Turbulence, as observed experimentally, contains certain characteristics that impose extremely
stringent requirements on a computer that is to be used for its numerical analysis. It is a phenomenon
identified with high Reynolds numbers where the nonlinear inertial processes dominate the flow. Also, high
Reynolds number causes the range of scales between the largest and smallest features to be extremely wide.
The existence of very small length scales of the turbulent eddies coupled with the three-dimensional
character of the turbulence imposes the requirement on finite-difference methods of very small mesh spac-
ings in all three directions of space; this, in turn, requires very large storage capacities within the
computer. Further, the need to solve these equations in a time-accurate fashion, together with the small
length scales, imposes very short allowable time steps in the numerical solution — this imposes the
requirement of extremely fast computers. Even the largest and fastest computers anticipated in the
reasonably near future fall far short of the requirements for accurately resolving the smallest significant
scales of the turbulence at Reynolds numbers of aerodynamic interest.




This conclusion is illustrated by an example for which the computer specifications required to
numerically simulate the turbulence in the boundary layer of an aircraft are estimated from a knowledge of
the smallest scales of turbulence that must be resolved by the finite-difference computations. Kolmogorov
(Ref. 1) gives an expression for the length scale of the smallest significant eddy:

e

where v is the kinematic viscosity of the fluid and ¢ is the kinetic energy per unit mass being dissi-
pated by the turbulence. The latter quantity can be estimated as

L T 3
] drag = velocity 5 o . Ce (2)
“ " mass in boundary layer 0.6 Ass(L) S e - AL

1f the classic equations for the drag coefficient and boundary-layer thickness for an incompressible
turbulent boundary layer on a flat plate are introduced into Eq. (2) and the resulting ¢ wused in Eq. (1):

s = 1.5L/(ReL)3/“ (3)

The number of mesh points required to resolve a boundary layer of unit width is

y = volume of bogndary layer _ (L - l)[g.64gﬁ;)] 2 th Retl/gg (4)
s s

e.g., on an aircraft surface 4 m long, 1 m wide, and Re = 107: N =10!3. For even this example that
treats only a portion of an aircraft surface, the number-of mesh points required is about 10° larger than
the memory unit existing in the core of a large computer such as ILLIAC IV, and about 10® larger than its
more slowly accessed disk storage. This example illustrates the basis of the conclusion that the calcula-
tion of aerodynamic turbulence resolved to its smallest scales cannot be accomplished by current computers
or those anticipated in the reasonably near future. This conclusion is reinforced when the computation
times governed by the small time scales of the turbulence are considered.

To eliminate these difficulties, the point values of instantaneous velocity, pressure, and density
must be replaced with new dependent variables sufficiently smooth and continuous that they can be resolved
by a computer. In doing this, some of the physics contained in the basic equations is lost, especially
for mechanisms such as the dissipation of turbulence into heat that is dominated by the smallest scales
prevalent in the turbulence. Some of this physics must be recovered through turbulence "modeling," which
relies a great deal on experimental data. Thus, numerical turbulence modeling is an interdisciplinary
activity that involves both complex numerical analysis and a careful examination and interpretation of
experimental data.

The dependent variables that can be resolved by the computer and utilized in the turbulence calcula-
tions are based on some sort of averaging process that filters the explicit behavior of the small scales
from the problem. Linear terms transfer directly to filtered quantities. The nonlinear terms in the
Navier-Stokes equations, however, form averaged moments. Thus, the averaging process introduces many new
dependent variables in each equation. These moments must either be ignored or expressed in terms of the
lower-order moments or individual averaged quantities to avoid the proliferation of dependent variables
relative to the number of equations — known as the "closure" problem. The techniques of "closing" the
equations that describe the averaged quantities is a major aspect of the turbuience modeling process.

In Eulerian finite-difference computations, the main thrust of research activity in turbulence model-
ing has been with two distinct though related approaches. The first can be called "statistical theory of
inhomogeneous turbulence" and is a direct outgrowth of the classic papers of Rotta (Refs. 2 and 3). In
his work, the basic equations result from time or ensemble averages of the Navier-Stokes equations at a
single point or from velocity moment equations based on the Navier-Stokes equations at two points. The
method is most applicable to steady-state, mean flow fields or to flow fields that are varying slowly rela-
tive to the turbulence time scales. The second method, called "turbulence simulation" or "sub-grid model-
ing," depends on averaging the primitive equations over space, which can be a line, a surface, and/or a
volume. The space dimension is smaller than the largest eddies, but much larger than the tiniest eddies
of the turbulence. This latter approach computes the dynamics of the eddies large enough to be resolved
by a three-dimensional computation mesh. The results which are the motions of three-dimension large
eddies, must be treated statistically to yield mean flow properties of engineering interest or information
to aid statistical turbulence modeling. Finally, a third method of modeling turbulence utilizes
Lagrangian methods. Here, vorticity fields are averaged into a sequence of discrete vortices, which are
then followed in space and time.

This paper does not attempt to survey all the research taking place throughout the world on the
various aspects of turbulence modeling. Emphasis is placed on the author's work, or that of his col-
leagues, or contracted work the author has monitored. This rather narrow view is permissible because the
material to be covered represents the "state of the art" in many respects. In this paper, consideration is
first given to the methods of averaging the Navier-Stokes equations for both the statistical and simulation
techniques. The effects of compressibility are handled in the statistical theory of turbulence by alterna-
tive methods: where averaging is performed for the primitive variable of velocity, pressure, and density
or when the velocity is mass weighted before the averaging operation. Then a sequence of turbulence models
of increasing complexity is described in terms of boundary-layer flews, including the effects of compres-
sibility. These models apply to two-dimensional compressible boundary layers. =“ome models employ an eddy
viscosity whose magnitude is computed from one or two equations that represent the intensity and scale of
the turbulence. A second turbulence model evaluates each of the Reynolds stress and turbulent heat-flux
components directly. Research in simulating turbulence is described, both at very low Reynolds number
where the small eddies can be resolved and at Reynolds numbers that correspond to actual flows where the
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influence of eddies smaller than the finite-difference mesh spacings must be modeled. Finally, some pro-
gress in the simulation of turbulence through the use of finite ring vortices is presented.

In these presentations, the physical aspects of the turbulence modeling are emphasized. The numerical
methods used in most of the work are generally accepted finite-difference techniques. When unique mathe-
matical methods are used, they are mentioned only briefly.

AVERAGING THE NAVIER-STOKES EQUATIONS

The specific averaging process used to account for the unresolvable small-scale eddies present in tur-
bulence depends on the general character of the flow field and the detail to which it is to be determined.
This point is illustrated with three examples. The first applies to steady-state mean turbulent flows and
leads to the methods called the "statistical theory of turbulence." Two subsets of this averaging process
are utilized for compressible fluids: direct time averaging of the primitive dependent variables wuj, p,
and p or time averaging where the dependent variables are mass-weighted. The second averaging process
uses a time average that follows the flow in time. Such an average, then, eliminates details of the turbu-
lence with time scales that are small compared to the averaging interval and permits computation in time
and space of the larger scales of the turbulence. This approach is best suited to flows where the large
eddy structure is two-dimensional. Finally, the most detailed calculation of turbulence which considers
its full three-dimensional character uses averaging over space contained by a finite-difference grid sys-
tem at an instant of time. These latter methods, called "large eddy simulation" methods, are the third
example shown. These averaging processes are treated together in this section to illustrate features they
contain in common and to delineate their differences, especially with regard to the meanings of the fil-
tered dependent variables. The dependent variables must be defined precisely in each averaging process to
interrelate the different methods and to compare the computed results with experimental data that may be
filtered in their own peculiar ways.

Statistical Theory of Turbulence

The Navier-Stokes system of equations for a compressible fluid in the absence of external body forces
is

O’t * (puj),j =0 (5)
and

(pui),t + (°”i“j & Sijp = Zusij)’j =0 (6)

where the notation of repeated indices represents summation over all coordinate directions and the comma
represents partial differentiation. Here, the instantaneous strain of the flow is

N 1
Sij =7 lug 5+ uy5.5) - 38559k (7)

For steady-state mean flows, the averaging process applied to Egs. (5) and (6) is

by 1 7 :
«F =13 . t* *
fix;) }lf ?Tj’-T f(xJ,t )dt (8)
The averaged equations become
(puy) ;=0 (9)
and
(puiuj + Gijp == Z“Sij),j =0 (10)

when the definition represented by Eq. (8) leads to

) =) =0 m
for steady-state mean flows. Also,
f’j X (?)'\j (]2)

In terms of the primitive variables, the local velocity and fluid properties are expressed as the sum
of a mean and a fluctuating quantity:

fF=f et (13)
In particular, then
=u, +u' 4
uj = Uyt oug (14)
p=ptp (15)
p=a+p' (]6)
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Consistency of these equations with the definition in Eq. (8) requires that

.
1 ] 1 -
}12 ). f (xj’t*)dt* = 0 (18)

When Eqs. (14) and (15) are introduced into Eq. (9), and the definitions in Eqs. (8) and (18) are applied,

(Uu. +T]_u—;_),J =0 (]9)

as the equation of continuity. Similarly, the momentum equation becomes
S (20)
puLu

- = = r s o
.+ Tu. + p'ulu; + pulut + p'urut + 6. ‘ +
jUj t e u,uJ f uJu1 uu‘uJ 84 u(
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where the small effects of the fluctuating viscosity are neglected. It is observed from Eqgs. (19)
and (20) that fluctuations in the fluid density introduce several additional second-order moments and one
third-order moment.

These equations can be simplified by redefining the manner of expressing the instantaneous flow quan-
tities and the properties of the fluid through the use of mass-weighted averages, originated by Favre
(Ref. 4). Here

= i 21
uj = Uy +ouj (21)

w o=l (22)

where (7) means a mass-weighted averaged quantity and ( )" represents the mass-weighted fluctuation. Spe-
cifically, a mass-weighted velocity is found by applying Eq. (8) to ouj obtained from Eq. (21). Then

pu; = Eﬁj + Eﬁg (23)
and defining Oj as the mass-weighted mean:
pu.
i, = =l (24)
J P
establishes the requirement that
ou? = 25
pU; 0 (25)

Equation (25) is the analog in mass-weighted averages to Eq. (18). It can also be shown (Ref. 5) that

prul plut
Gg'= g _751 s _??i (26)

When Egs. (21), (22), (15), and (16) are introduced into Eqs. (5) and (6) and mass-weighted averages are
taken, the mean equations of motion (Ref. 5) become

(pu;) . =0 (27)
and
e ] L - 2 : ] (R
[oujui + 6ijp = u(“i,j + Uy g - §'éijuk,k) - ouiuj],j =0 (28)

where, cgain, the smalier terms associated with the viscosity are neglected. A comparison of these equa-
tions with Eqs. (19) and (20) shows that mass-weighted averaging eliminates the need for considering the
mass-flux correlation terms » uj. Equations (27) and (28) are identical to the equations used to compute
steady laminar flows, except for”the additional term pujuy.

Equations (19) and (20), or Egs. (27) and (28), represent the basic averaged or filtered transport
equations used in statistical turbulence theory. The remainder of the theory applies to the evaluation of

5 “'”j’ u%u&, and ¢ u%u& or the equivalent ou%uj (see section "Statistical Turbulence Models").

Time-Dependent Mean Flow
If the "mean" flow relative to the small scales of turbulence varies with time, the averaging
procedure represented by Eq. (8) can be modified to a running average (see Ref. 6):

- ' 1 t+T
X * *
(xj‘t, T L f(xj’t )dt (29)

™)

Here the value of T is assumed to be large compared to the periods characteristic of small scales of the
turbulence and small compared to the period of the mean motion. The meaning of T will be seen more
clearly after some development. From Eq. (29), it follows that
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For clarity, the following discussion is restricted to the simpler equations of incompressible flow where
the Navier-Stokes equations are

s w =0 (32)
] and
Uit + [ui"j + dij(p/O) - Vui,j],j =0 (33)
The methods of Ref. 6 are applied here in terms of Eq. (29). Consider the hypothetical trace of a velocity
signal (e.g., from a hot wire) in a turbulent flow (Fig. 1). The instantaneous velocity at time t* can
be represented in two ways. First, as shown in Fig. 1(a), <

ui(t*;t) = Uy(t) + ui(t*st) (34)

where t s constant in the integration of Eq. (29). If Ui(f) is defined so that

—_— ] THE 2
= ' o * *=
uj(t) 1 4 uj(t*;t)dex = 0 (35)
then
ug(t) = Uy(t) (36)
Also,
; uiuj(t) = Ui(t)UJ.(t) + u,'iuj(t) (37)
Nhen(Eqs. (32) and (33) are averaged according to Eq. (29), and the instantaneous uj 1is represented by
Eq. (34),
L g = 38
UJ,J 0 (38)
o R B e
Up, g * (U35 + 655(P/p) = WUy S+ TTUT) 5= 0 (39)

where both Ui and u%uj are sufficiently smooth and continuous to be resolvable.

The manner of expressing uj(t*) in Eq. (34) is such that the small-scale turbulence can have
opposite signs on either side of t* = t. Intuitively, this behavior is inconsistent with the idea that
turbulence is random, especially in its smallest scales. An alternative definition for the local velocity
that does not suffer from this is

u.i(t*) = v'i(t*) + V%(t*) (40) |

] (as shown in Fig. 1(b)). The symbols V and v are used for the velocity components to distinguish the
k variables in this type of averaging. If T is short compared to the period of the large-scale motions,
] the first term on the right in Eq. (40) can be expressed with the first two terms of a time series:

ug(t*) = v (t) + \'li(t) - (t* - t) + vi(t*) (41)

If V;(t) and Vi(t) are established from the requirement that

vi(t*j =0 (42)
applying Eq. (29) to (40) shows that
uy(t) = vi(t) (43)

A comparison of Eqs. (36) and (43) shows that the large-scale quantities in both expressions Eq. (34)
or (40) are identical. The moment of velocity becomes

ruj = Vi(t)Vj(t) + Vi(t)\?j(t) 133+ Vi(t)v3 C(tF - t) + \'/J.v; Tt -t) + W (44)
or
‘51“_3 = V,TEN v'jm + Vi(t)"ﬁ/j tr - t) + \'IJ.(t)vi- t* - t) + v";VJ (45)




A comparison between Eq. (37) and (44) reveals that the Reynolds stresses are related as

TITE a2 o . s
ujuj ViVj T+ Vivj (t* - t) + Vjvi (t* - t) + ViV (46)

Thus, the terms identified as small-scale Reynolds stresses in these equations depend to a large extent on
the actual averaging or filtering process used. Only in the 1imit T - 0 do the following Reynolds
stresses apply:

THTLE RTALTAS (47)

However, this limit is meaningful only when the time scales of the resolved turbulence and the small-scale
turbulence are widely different. Although the large-scale quantities for the two averaging processes
described are identical in meaning, their computed values may differ, depending on the modeling applied to
the individual subgrid terms, as in Eq. (46).

Subgrid Averaging

For the computation of time-dependent, three-dimensional fields of turbulence, the small-scale eddy
filtering is customarily performed over space related to the finite-difference mesh dimensions. Deardorff
(Ref. 7) utilized a running averaging over the computational grid volumes, analogous in three dimensions
to the one-dimensional time averaging cited earlier leading to Eqs. (35) and (36). Schumann (Ref. 8) con-
sidered the Navier-Stokes equations in conservation form, involving volume and surface integrals, and
demonstrated that space averaging should include both volume and surface averages. This sort of averaging
permitted Schumann to consider noncubic mesh volumes in a most direct fashion. He was forced ultimately,
however, to relate these different surface and volume averages to avoid proliferation of dependent
variables to numbers exceeding the number of available equations. While the Deardorff and Schumann
methods are very valuable for solving practical problems, emphasis is placed here on the filtering method
suggested by Leonard (Ref. 9) and developed by Kwak et al. (Ref. 10). This latter procedure is par-
ticularly suited to illuminate the interaction of the averaging or filtering process and the spectral
character of the resolved eddies.

Leonard averaging begins with representing a turbulent field variable, again with Eq. (13), but with
the mean or filtered quantity defined as a volume integral

+w
f(x) f G(x - x')f(x')dx’ (48)
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Here x and x' are coordinate vectors and dx' represents an element of volume about x'. The function

G s the selected filter function, and its dependence on the position difference vector is most suited to
homogeneous flows. If f(x') were constant, then f(x) = f(x') = C, and the filter function G must

satisfy
e @
1 f G(x - x')dx' =f G(z)de (49)

For homogeneous flows, the function G extends over all space. For nonhomogeneous flows, a directional
bias may be needed to define G. For the present, attention is focused on homogeneous flows.

If G is piecewise continuously differentiable and tends to zero as (x - x') - = and f is
bounded in value or f = 0, at the surface of a finite volume of integration, then

af _ of
3 X (50)
and
5f _ af
as for a running time average, Eqs. (30) and (31). When
uj = Uy +oug (52)
and the Navier-Stokes equations are averaged according to Eq. (48), there results
ui,i =0 (53)
- P -
4t <K)1 gl i
The nonlinear term expands to
Ujuy = Uy + uzu; + ujuj i ujuy = ujug + (ui e ui“j) + u1‘.uj # uiuj + uzuj (55)

The term U.Uj represents the quadrature of filtered quantities filtered again. In a time-dependent solu-
tion of thede equations, the second filtering operation can be performed at the previous time step since




the intervals between time steps are usually quite short. The other three terms in this member contain
subgrid quantities that must be modeled. Some modeling processes treat them as a group:

<l
e

=y R o gy
Rij uguy * Uy j + uju; (56)

There is a striking similarity between Eqs. (55) and (56) and those resulting from time averaging in the
previous section.

The contribution of the filter function can be illustrated with a few examples. First, consider a
“top-hat" filter function defined as

Iy
' o~ ]_ e ' _A
G(ﬁ'i)-AA for |x-x'| <
8y (57)
=0 for [x-x'|2=5
On applying Eq. (48) with (57), the mean velocity becomes
y : AA/Z
ui(x) = &= uj(x + gdg (58)
Ad-A, 2
A/

which is equivalent to a running volume average. The Fourier transform of Eq. (58) is
5 3 sin(klAA/Z)
U.I(.k_) o 2'31 kQAA/Z U1(k) (59)

To permit Fourier transformation back to physical space, one must choose ap so that kesp # mn (where m
is an integer) to avoid singularities.

A filter function utilized by the Stanford group (Ref. 10) for homogeneous flows is the Gaussian

filter:
s [ (x - x')2
6(x - x') =( 'I"iA_‘A_> expl: Y_—__z‘_ (60)

where vy is a constant set equal to 6. With Eq. (60), the filtered velocity is

e teo ' 2
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The Fourier transforms are related as

A 2
U, (k) = ug(k)exp|- TAF k2 (62)

A comparison of Eqs. (59) and (62) shows that the spectral intencity of the filtered velocity decreases
much more rapidly for the Gaussian than for the "top-hat" filter, i.e., an exponential squared term vs.
sin(kap/2)/(sp/2). Thus for given mesh dimensions, the Gaussian filter velocity captures a smaller frac-
tion oé the total turbulence momentum and kinetic energy of the turbulence.

A third type of filter that has been used is

3 sin w(x, - x')/a
G(x - x') = I —n(;L_—;r§—A (63)
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which yields a sharp cutoff in wave number or k space.
Canonical View of Filtering

The filtering methods of the Navier-Stokes equations described previously were identified with steady
state-flows (statistical turbulence theory), time-dependent flows with running time averages and time-
dependent, volume-averaged flows (subgrid modeiing). The first category incorporates all turbulence into
the Reynolds stresses and the filtered velocities are true mean values in a statistical sense. The
finite-difference mesh spacings used for such computations are controlled by the spatial gradients of the
mean flow field and are not related to the spectral character of the turbulence. When time-dependent
fields are to be considered, the primary factor in establishing the filtering time period or filtering
space dimension is the fraction of turbulence to be calculated explicitly and that which is to be con-
signed to the subgrid or subperiod Reynolds stresses. The spectral character of the turbulence plays an
important role in this decision. It was shown that the form of the equations resulting from either run-
ning time averages or volume or grid averages is identical, although the dependent variables formally are
based on different definitions. When consideration is given to the spatial resolution required to be
consistent with the time-filtered velocity or, conversely, the corresponding time interval consistent with
a volume-filtered quantity, the difference between the running time or volume-filtered quantities becomes
rather indistinct. Thus, the two approaches have much in common and the modeling experiences of one can




be carried over to the other. In both approaches, the turbulence modeling becomes less important as the
scales of turbulence resolved by the computations become smaller. Further, because turbulence tends
toward isotropy as scales diminish the subgrid model has the greater potential of being universal in
character.

MODELING STATISTICAL TURBULENCE EQUATIONS IN BOUNDARY-LAYER FLOWS

Before the equations that describe steady-state statistical turbulence (e.g., Eqs. (19) and (20) or
(27) and (28)) can be solved for a specific flow field, it is necessary to provide some means of evaluat-
ing the moments of the unresolved velocity fluctuations (Reynolds stresses) which they contain. The
method used has a long history and a complete description is beyond the scope of this paper. References 11
through 14 provide an excellent review of the subject. A brief description to place the current methods
in the proper context follows. For illustrative purposes, it is best to start with the simpler constant
property flows.

Constant Fluid Properties

The earliest models of the Reynolds stresses in a boundary-iayer or channel flow were developed by
Prandtl in 1925. The Reynolds shear stress was expressed with a Boussinesq eddy diffusivity:
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and, as noted from the dimensions of ¢, the eddy diffusivity could be expressed in terms of the proper-
ties of the turbulence, such as the velocity scale or intensity of the turbulence and measures of the
scale of the eddies, their length, period, or frequency. Thus
¢ = velocity scale x length scale
= (velocity scale)?/frequency (66)
= (velocity scale)? x period
Algebraic Models
Prandtl represented the velocity scale by

3y

velocity scale = El}ay

where % is a characteristic length. He represented the length scale with L,, another characteristic
length. The eddy diffusivity became

- 7|2, o|aul
€ zlzz’ay} e ’ay( (67)
where 2, was called the "mixing length." At short distances away from the surface, it was found

empiricale that
Ly = KY (68)
where « 1is the von Karman constant (« = 0.4). Very near the surface, the viscosity of the fluid "damps"

the length scale so that 3%y/3y = 0 at the surface. There are many expressions to account for the
damping, the most popular being that suggested by van Driest:

‘( /o)
Ly = .<y{1 - exp[— y—%:]] (69)

The damping factor At equals 26 on a flat plate, but it is sensitive to pressure gradients and surface
mass transfer (Ref. 11).

About 1/4 of the boundary-layer thickness away from the wall, the mixing length begins to fall below
the value represented by Eq. (68). Beyond y/s = 0.25, the mixing length can be represented by

by = 0409 % 6 (70)

as suggested by Escudier (Ref. 15). An alternative direct expression for the eddy diffusivity in the
outer part of a boundary layer is |

€ = 0.0168ugs* (71)

as suggested by Clauser (Ref. 16). Here the constant contains the relationship of the local velocity i
scale relative to u, and the local length scale relative to &*. Sometimes Eqs. (70) and (71) are modi- |
fied to account for the physical fact that the turbulence in the outer part of the boundary layer is
intermittent. This group of equations, Eqs. (65) through (71), has been the basis of many successful tur-
bulent boundary-layer or channel-flow design computations and should continue to be successful for those
flow fields and boundary conditions where the turbulence can remain reasonably in equilibrium with the
mean motion (see Refs. 11 and 12)
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One-Equation Models

There are many flow fields where the mean flow changes so rapidly that the turbulence cannot remain
in equilibrium with the mean motion; this must be accounted for by modeling the turbulence with differen-
tial equations. Early research in this modeling process accounted for the nonequilibrium by expressing
the velocity scale as the square root of the turbulence kinetic energy per unit mass. The kinetic energy
of turbulence was defined by a partial differential equation from moments of the Navier-Stokes equations:

”jNS(ui) + uiNS(uj) =0 (72)

where NS represents the Navier-Stokes equation operator (e.g., Eq. (6)). When Eq. (72) is averaged
according to Eq. (8), contracted, and mean quantities subtracted, the following kinetic energy of turbu-
lence results
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when, for simplicity, the fluid properties are considered constant. The first term on the right is iden-
tified with the production of turbulence, the second with the diffusion of turbulence by the turbulence,
the third with the diffusion of turbulence by molecular processes, and, finally, the fourth with the dis-
sipation of the turbulence. Since the goal of the computation is to evaluate oujuj, the first term con-
tains no new quantities to the problem and can stand as is. The second term contains third-order and
pressure-fluctuation terms that do not appear in the conservation equations for the mean motion and are
new to the problem. To avoid a proliferation of unknowns, these terms are "modeled" in terms of the mean
motion and quantities such as an eddy diffusivity. The third terms, expressible in the dependent variable
of interest k, is treated directly. The fourth term depends on the gradients of turbulence fluctuations
and therefore is produced largely by small-scale eddies. Again, this is a new unknown and must be modeled
to "close" the equation at the level of the turbulence kinetic energy equation. Since k involves second-
order correlations of velocity fluctuations, this is an example of "second-order closure."

An example of a one-equation closure model restricted to a boundary layer is the method of Glushko

(Ref. 17). Glushko models the turbulence kinetic energy equation, Eq. (73), for a boundary layer as
(ok)’t iz (oujk),j = DE(F)ufz + [[u + OE(M')]k’Z}‘2 - [u+ pe(rr)]c %% (74)

where the terms on the right represent the production, diffusion, and dissipation of turbulence kinetic
energy, respectively. The production term is a direct eddy diffusivity representation of the term in
Eq. (73). The turbulent diffusion of kinetic energy and pressure fluctuations are grouped as an eddy
diffusivity controlled gradient diffusion process. The term A acts as a Prandtl number representing the
ratio of the turbulent diffusion of mean momentum to that of turbulence kinetic energy. The dissipation
term is modeled to apply both near the surface and in the fully turbulent portions of the boundary layer,
i.e., the u and pe terms, respectively. Although dissipation is a mechanism that occurs at the smallest
scales of the turbulence, the dissipation length scale, L, has been shown from the theory of isotropic
turbulence (Ref. 18) to be much greater than the Kolmogorov scale and of the same order as the mixing

length, %y, when the dissipation is expressed in terms of the kinetic energy over all eddy dimensions.
Specifically, the quantities in Eq. (74) were represented by Glushko as

%»= H(r)ar (75)

where the turbulence Reynolds number

r=
and H(r) is expressed empirically as
r/ry s 0<r/ryg<0.75
H(r) =g rivg - (r/ry = 0.75)2 ; 0.75 s rfry < 1.25 (77)
1 v 125 < r/rg <

The Tength scale is given by an empirical expression based on data of the correlation length in the y
direction obtained in a flat-plate boundary layer:

X,/ 6 5 S xz/é < 0.23

=

(x,/6 + 0.37)/2.61 , 0.23 ¢ X,/8 < 0.57 (78)
(1.48 - x2/5)/2.52 , 0.57 < y/6 < 1.48

A

The empirical constants suggested by Glushko are

a=0.2
o = 110 (79)
€ =3.93




A critical examination of the Glushko model was made in Ref. 19 by comparing computed results with experi
mental data for an incompressible turbulent boundary layer on a flat plate and on a surface subjected
initially to a large adverse pressure gradient followed by a constant pressure region. A comparison of
the results obtained from the Glushko model with the Coles "law of the wall" (Ref. 20) is shown in Fig. 2.
The Coles correlation is known to fit an extensive collection of constant property flat-plate boundary-
layer data. In the inner part of the boundary layer, x,u*/v < 20, the Glushko model yields excellent
results. In the region where the Coles law is logarithmic, the Glushko model underpredicts the local
velocity slightly. In the outer part of the boundary layer, the Glushko model continues to underpredict
the local velocity as shown by the comparison with Clauser's velocity defect correlation (Ref. 16) shown
in Fig. 3. Despite these differences in the velocity profiles, the Glushko model yielded excellent pre-
dictions of the local skin friction and shape factor, s*/6, on a flat plate at Reynolds numbers correspond-
ing to positions downstream of the end of transition. Beckwith and Bushnell (Ref. 19) investigated the
consequence of modifying the function H(r), Eqs. (77), the length scale, Eqs. (78), the constant C in
the dissipation term, and the diffusion rate. They found that setting H(r) = 1 at y/2 > 0.5 and
increasing the diffusion by a factor of 3 slightly improved the velocity profile predictions in the outer
part of the boundary layer, but had very little effect on the predicted skin friction and on #*/a.

Beckwith and Bushnell next applied the Glushko model to a calculation of the boundary layer on a sur-
face with an adverse pressure gradient followed by a constant pressure at conditions corresponding to a
particular test from the data of Goldberg {Ref. 21). These data were chosen as a particularly severe test
of the Glushko model because the adverse pressure gradient was sufficiently strong to drive the boundary
layer toward separation. The computations were initiated at the upstream measurement station where the
data for the mean velocity and turbulent kinetic energy profiles were used as initial values of the compu-
tations. Figure 4 shows the distribution of the velocity at the boundary-layer edge with distance along
the test surface. The two curves represent two ways of interpreting the data, and their difference is
indicative of the uncertainty in the velocity. Although the differences are quite small on the figure, it
is the derivatives of the curves that enter the calculations and differences in them that affect the com-
putations of the skin friction and form factor significantly. Figure 5 shows the skin-friction coeffi-
cient along the test surface computed by Beckwith and Bushnell with the original Glushko model and some
modifications compared with Goldberg's data. The data are given in a crosshatched band that represents
the scatter of different types of measurements and interpretations: a sublayer fence, a Preston tube,
velocity profiles and a Clauser plot, and velocity profiles and the Ludwieg-Tillman formula. The original
Glushko model with enhanced diffusion and H(r) =1 at y/s > 0.5 fits the data well at the upstream
and downstream ends of the test zone with either velocity distribution. The skin friction, however, does
not drop as much as the data in the range 0.4 < x; < 0.5 m. When the models are adjusted to follow the
large drop in Cg by increasing the constant of the dissipation term or lowering the value of the maximum
length scale in Eq. (78), the downstream value of Cf 1is missed. Since the data are most reliable there,
the value of the modifications is questionable. Figure 6, showing the form factor &*/a, leads to similar
observations and conclusions. In either case, the Glushko model permits a reasonably accurate prediction
of the general behavior of the rather severe test. Possibly, this results from the ability of the model
to predict the profile of the turbulent kinetic energy quite well (as shown in Fig. 7). The modifications
tried by Beckwith and Bushnell suggest a small improvement; however, the error in the data is probably
larger than the differences between the various versions of the model, and evern the original Glushko ver-
sion yields rather good results.

Two-Equation Models

The one-equation models described previously use an algebraic length scale that implies an equilib-
rium between the local scale of turbulence and the mean flow. For rapidly changing mean flows, this
assumption can be restrictive and is relaxed by models that express some function of the turbulence scale
with a partial differential equation in addition to the one for the turbulence kinetic energy. The scale
function and the turbulent kinetic energy are then combined to express the eddy diffusivity. Although
there are many two-equation, second-order closure models, their general character can be described by
examining four representative models, those of Jones and Launder (Ref. 22), Ng and Spalding (Ref. 23),
Saffman and Wilcox (Ref. 24), and Wilcox and Traci (Ref. 25). These models are represented by the follow-
ing for only the high turbulent Reynolds number portions of a boundary layer as this restriction was
inherent in the form of the models presented by their originators.

Jones-Launder dissipation-function model:

R (U LI o 3 (80)
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where
e = ¢ K2/E (82)
with the constants
€y 21,85, © =2, o 0.09 , o = (" op = 1.3 (83)

Ng-Spalding length-scale model:

B = (@, )7 - ¢ T*(‘E“ E,z) : (84)




where

e = kM2 (86)
with the constants
CD = 0.09 , cp =0.98 , Co = 0.059 , ¢ = 702 , Dy (o 5 L (87)
Saffman-Wilcox dissipation-rate model:
%% = a*{ul‘?Ik - gruk + (?*LE;7 )2 (88)
B - afd, ,le? - 8u? + [oe(w?) ,] (89)
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where
By = Fyu (90)
at =g, B*=0.09, ot=o=z
X (91)
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Wilcox-Traci dissipation-rate model:
BE < a*[U, K - 8%k + (o%ek (92)
ot - o*lu - B*w a*e ’2),2
2 T1/2
R - afd, ,lu? - B+20|:(kw )2] w3 + [oe(w?) L1, (93)
where, again, Eq. (90) applies and
a* =g, B*=0.09, o=c*=05, §=0.15, a=% (94)

Note that all of the above models use a kinetic-energy equation that contains production, dissipation,
and gradient diffusion terms as does Eq. (74). Jones-Launder and Ng-Spalding do not model the production
term, other than employing an eddy diffusivity in the first term of Eqs. (80) and (84). The Saffman-
Wilcox and Wilcox-Traci models, however, model the production term in terms of the interaction of kinetic
energy and mean strain. Chambers and Wilcox (Ref. 26) showed that these four models can be expressed in a
common form; when this is done, it becomes evident that the terms in the four models representing the
dissipation of kinetic energy are essentially equal. The models all use gradient diffusion, but those
associated with Wilcox use half the diffusion rates of turbulence kinetic energy used by the others.

The scale equations of the four models contain dependent variables that are either expressed directly
as a length (Ng-Spalding) or are quantities that involve spatial gradients in the dissipation function
(Jones-Launder) or in the dissipation rate w (Saffman-Wilcox or Wilcox-Traci). The first quantity can be
expressed exactly with an extremely complex two-point correlation completely new to the system of equa-
tions. Similarly, when the second quantity is expressed exactly, many new second- and third-order single-
point correlations of velocity gradients are introduced. The exact character of the equations cannot be
retained, and the correlations must be modeled with approximations guided largely by dimensional arguments
and analogy, term by term with the kinetic energy equation. The models identified with Saffman-Wilcox and
Wilcox-Traci were modeled intuitively from the start, without reference to an exact equation. The similar-
ity of the form of the different scale equations permits their comparison in a common form (Ref. 26).

From this, it is noted that the models are essentially different in their "dissipation" terms. The Wilcox
models, again, use smaller rates of gradient diffusion. The various scale variables can be interrelated
as follows:

E=cfw, =%k (95)

In the above equations the absence of terms associated with molecular viscosity, e.g., those terms
emphasized in Ref. 27, does not permit integration to the surface in finite-difference, boundary-layer
codes. The inner boundary conditions for the turbulence variables as well as the mean flow must therefore
be applied by fitting the computations to asymptotic relationships known to apply in the fully turbulent
flow near a surface. These are the "law of the wall" for the mean velocity:
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and, for the turbulence quantities,




k = u /o Saffman-Wilcox
or
w = U /a*cy Wilcox-Traci
k = u2/Je
5 "1 Jones-Launder (96)
Tim x,/8 ~+ 0: E=u3/y

K= 02/ J5

Ng-Spalding
L = c[‘-)/“xy

Note from the modeling constant values of a*, ¢, and cn that the limiting values of k “or the differ-
ent models are identical and, universally, the 1imiting eddy diffusivity is

Tim x,/8 + 0: e = kXU, (97)
In the numerical work that led to the examples cited here, these inner boundary conditions were applied at
values of y* = x,u,/v less than 20. The conditions at the edge of the boundary layer were set as
follows:
u, = ug
k = 0.015 u_?/a* (98)
L= 0.09 J¥s

The kinetic energy relationship above was found in the Wilcox models to yield velocity defects consistent
with Clauser's correlation (as shown in Fig. 3). Values smaller than ka*/u.” = 0.015 made little differ-
ence on the correlation, but the value given in Eq. (98) was easier to handle numerically. The expression
for the length scale is equivalent to the Escudier model (Ref. 15), where the mixing length &5 is given
by 2g/é = 0.09.

The computations made with these equations, and the mean-flow equations (9) and (10), are based on a
version of the now standard marching techniques utilized for the parabolic boundary-layer equations. Since
the equations are applicable only to fully turbulent equations, it is necessary to initiate computations
at a station where the boundary layer is fully turbulent. The initial profiles of mean velocity, k, w,

E, and ¢, are based on data when comparisons are made with experimental results. For predictions, it has
been found useful to start computations on the assumption that the initial station is on a flat plate

where
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the Coles "law of the wall" and "law of the wake" combined. The kinetic energy of turbulence can be

approximated by
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The results of computations based on the four models explained above are compared here with experi-
mental data on flat plates (Refs. 28 and 29), on a surface experiencing an adverse pressure gradient
(Ref. 30), and a favorable pressure gradient (Ref. 31).

Figure 8 compares the computations with data obtained on flat plates. The Jones-Launder (JL),
Ng-Spalding (NS), and Wilcox-Traci (WT) models reproduce extremely well the Karman-Schoenherr skin-friction
correlation equation downstream of the initial station. The Saffman-Wilcox model gradually rises above
the other relationships, but stays within 10% of the standard formula. On a law-of-the-wall plot corre-
sponding to the downstream station farthest from the initial station, a similar ordering of prediction
occurs for the different models. The differences between the models become more evident in the velocity
profiles when plotted as in Fig. 8(c). The Wilcox-Traci model does slightly better here than the other
models. The difference between the models, other than SW, is very slight in terms of the shape-factor
distribution (Fig. 8(d)). Finally, Figs. 8(e) and (f) show how well the models represent the dependent
variables of the modeling equations at the farthest downstream station. Figure 8(e) shows the profile of
the kinetic energy. Two symbols are used to represent Klebanoff's data (Ref. 29); the crosses are the
kinetic energy as measured, whereas the filled circles are 9/4§u525. Wilcox has argued that the quantity
k in Egs. (80), (84), (88), and (92) should be identified with u! because it is this component of the
Reynolds stress tensor that primarily produces the mixing in the sﬁear stress and should represent the
velocity scale of the eddy diffusivities. This view only changes the interpretation of the data within
y/6 < 0.2, but does not alter the conclusions from the comparison of different models. The WT model seems
to perform slightly better than the others. Figure 8(f) reveals the reasons the SW model yielded higher
skin friction than the others. It overshoots the length-scale data by almost a factor of 2. The NS and
JL models perform best in predicting the length scale.
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Figure 9 shows the ability of the models to compute data obtained on a surface of constant pressure
followed by an adverse pressure gradient. The open and closed symbols represent different interpretations
of the data and suggest its possible inaccuracies. The WT and NS do best in computing skin-friction dis-
tribution and downstream velocity profiles (Figs. 9(a)-(d)). For the modeling dependent variables, there
is tittle to choose between the models in terms of the effective kinetic energy, but again the SW model
has difficulties with the length scale (as indicated in Fig. 9(f)). In Fig. 10, the computations are com-
pared with the data obtained in a favorable pressure gradient by Ludwieg and Tillman, again interpreted in H
two ways (Refs. 28 and 31). When the possible error range of these data is considered, all the models do |
well in computing the results, based only on mean-flow measurements.

Full Reynolds Stress Modeling

Aerodynamic flow fields characterized by asymmetries, three-dimensional features, boundary-layer
separation, and/or extremely rapid changes in the mean flow cannot be represented with a scalar eddy dif-
fusivity without the introduction of additional approximations. To avoid these approximations and to
utilize a system of modeling equations that, in principle, may have universal application to a variety of
flow fields, much attention has been given to modeling the components of the Reynolds stress tensor
directly. Rotta's pioneering effort in the area (Refs. 2 and 3) contained many of the basic elements of
the current models that have been developed in research centers in various parts of the world. Emphasis
is placed here on the invariant tensor modeling originated by Donaldson (Ref. 32) and further developed at
the Aeronautical Research Associates at Princeton (ARAP) for atmospheric and aerodynamic flow fields
(Refs. 33-35). This emphasis does not imply that this particular model is the most complete available,
but it has been extended to compressible flows, a topic of particular interest to this author. It con-
tains another feature in its boundary-iayer version, i.e., terms that permit accounting for low-turbulence
Reynolds numbers and thereby allowing computations to be extended to the surface. The need to fit to the
Taw of the wall, as in the two-equation models cited earlier, is eliminated. This is particularly impor-
tant near points of boundary-layer separation. The model in the form presented here, however, is
restricted, even with its generality in treating the Reynolds stress tensor, to an algebraic length scale,
as was the Glushko one-equation model discussed previously. It differs basically from the Glushko model,
then, in that the elements of the kinetic energy are resolved and the local shear stress is computed
directly without invoking an eddy diffusivity.

The basic equations of the invariant second-order closure of Donaldson and his colleagues are pre-
sented in Refs. 32 through 35. Reference 35 makes a careful comparison of computations with the Donaldson
model and experimental data in a variety of incompressible aerodynamics flow fields. For brevity, only
attached-boundary-layer flows are considered here. Before presenting some details of the model, it is
necessary to define the term "invariant" used in connection with this model. It takes on the double
meaning that (1) the modeled terms exhibit the same tensor symmetry and dimensionality as the terms
they replace and (2) the goal that constants in the model need not be varied from flow to flow. Currently,
the latter goal relative to the scale equation of turbulence is being pursued along lines given in
Refs. 3, 36, and 37.

In Cartesian coordinates, the boundary-layer equations for the elements of the Reynolds stress tensor

are:
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and
A= 32 (107)

defined by the Escudier model, Eq. (101). The modeling constants used in the examples that follow are

Cd (diffusion of third-order correlation) = 0.1

Cle (diffusion of pressure-velocity correlations affected by mean velocity gradient) = 0
vaz (diffusion of pressure-velocity correlation) = 0.1

Cpgl (pressure-velocity gradient correlation mean velocity gradient contribution) = 0
cpgz (pressure-velocity gradient correlations) = 0.5

a (dissipation constant near wall) = 3.25

b (dissipation constant, high turbulent Reynolds number) = 0.125

The modeling equations are given in detail above so that physical phenomena contributing to the creation
and destruction of individual Reynolds stresses can be described and their interaction demonstrated. The
first term on the right in each equation represents the production of the individual Reynolds stress. Note
that the interaction of the shear stress and the mean strain contributes to the production of uj, whereas
the other normal stresses are not produced directly. Equation (105) shows that the shear stress is_gro—
duced b¥ interaction ul? and mean velocity strain. The diffusion mechanisms for the components uss uz,
and uju, are each different. If Eqs. (102) to (104) were summed to yield the kinetic energy in the ' left
members, the different coefficients in the diffusion terms would indicate the diffusion of a quantity
different from the kinetic energy since the individual normal stresses would be weighted unequally. Thus
this model does not collapse to the two-equation models wherever turbulent diffusion is important. The
terms resulting from pressure velocity gradient correlations, Rotta's "tendency toward isotropy," contain-
ing the modeling coefficients Cpqy and Cpg, in Eqs. (102) through (104), sum to zero as required in
incompressible flow. Although tﬁé Cpg1 %erms are not included in the numerical example here, the equa-
tions show that the interaction of shear with the mean velocity strain removes energy from uj” and dis-
tributes it equally to u3” and uj”. In the normal stress equations, the Cpg, terms remove energy from
those components greater than the average energy of the ncrmal stresses. The pressure-velocity gradient
correlations tend to deplete the Reynolds shear stress. The dissipation terms used have both high and low
Reynolds number contributions, as in Glushko's Eq. (74). Finally, note that, except for the diffusion
terms, the equations for wu’ and uj are identical.

When this model is used to evaluate the characteristics of a boundary layer, the low Reynolds number
terms it contains permit initiating the computations with a laminar boundary at an upstream station.
Transition to turbulence can be initiated by introducing a "spot" of turbulence within the profile at the
initial station. It is not believed that this transition corresponds to the physical transition, as the
modeling coefficients were established from fully turbulent flow data, but it provides a convenient way to
start the calculations. On a flat plate, the ARAP model yields skin friction that starts with the Blasius
laminar boundary-layer solution, passes through a form of transition, and then follows the Karman-
Schoenherr correlation equation. At stations with turbulent flow, a law-of-the-wall plot agrees with mean
velocity profile data, but this should be expected since this fit was used to establish the value of the
modeling cunstant a. In particular, the results of computations corresponding to the data obtained by
Klebanoff (Ref. 29) are shown in Figs. 11 through 13. The computations were adjusted so that the calcu-
lated momentum thickness agreed with the measured value at the test station. As shown in Fig. 11, the
computations of the mean velocity proTile agree very well with the data. The shear stress profile
(Fig. 12) is also well represented by computations that use the ARAP turbulence model, the calculated
values being within 4% of the measurements near the wall. Figure 13 compares calculated and measured
normal stresses. Again, the model evaluates the normal stress ub quite well over most of the profile.
The model exceeds the data somewhat near the wall, but this is the region where a u’ measurement is
least accurate. The normal stresses wu} and uj, however, are underpredicted significantly. In fact, the
modeled value of uj is the same as uj, except for y/Sexp > 0.7. This observation is consistent with
expectations resulting from the relative sameness of Egs. ??03) and (104), even if the modeling constant
(x g1 s not set equal to zero. The accurate prediction of u’ and the strong dependence of the shear
sgress on this quantity possibly explain why good shear stress predictions result even though the kinetic
energy is being missed. The inability of the model to predict each of the Reynolds stresses with equal
accuracy brings into question whether the generality of the model can be utilized to its fullest at this
time. Another full Reynolds stress model (Ref. 38) shows better agreement with these data; however, this
mode]l was not integrated to the surface and the input boundary conditions based on the data may have forced
the agreement elsewhere. These models, while possessing considerable potential, require further
development.

Compressible Fluid Flow
When consideration is given to compressible fluid flow, it is necessary to supplement the continuity
and momentum equations with an energy transport equation that contains temperature or enthalpy as its

dependent variable and an equation of state. When the energy equation is filtered, as, for example, with
mass-weighted averages, the steady-state equations (27) and (28) are supplemented by

U,u,
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to the leading terms. Here the transport of heat and the stresses introduced by molecular processes are
represented by qj and tjj, respectively. The new turbulence quantity introduced is ou}h"; the turbulent
heat flux, which represen%s primarily the correlation of velocity and static enthalpy fluctuations as the
density fluctuations, also present, are of higher order. Consistent with the eddy diffusivity hypothesis,
the turbulent heat flux can be written:

pu:]fh'-' = -P% ﬁ’j (109)

where a new parameter, the turbulent Prandtl number Pr¢, is introduced to relate the transport of energy
with momentum. For models that employ full Reynolds stress, pu’h" are represented as the dependent
variables in separate partial differential equations. The Pran&tl number is replaced by the modeling con-
stants of these equations.

Algebraic Models

The algebraic models of turbulence are extended to compressible flows by the simple hypothesis that
the local eddy diffusivity is independent of the local density and is sensitive to density variations only
through their overall effect of the local strain and on the overall boundary-layer thickness. The length
scales, Eqs. (68) through (70), are retained unchanged except for the use of surface or local properties
in the van Driest damping function. In keeping with this hypothesis, the &* wused in Eq. (71) neglects
density variations (Ref. 11). Thus, the predominant effect of the local density on the turbulent shear
stresses pujuj is in their proportionality to the density, with the correlation of the velocity fluctua-
tions being reiatively insensitive to local density levels. This simple hypothesis has proven to be very
accurate for boundary layers on surfaces where changes occur quite gradually.

To date, most of the aerodynamic phenomena involving compressible flows, e.g., skin friction, aero-
dynamic heating, transpiration cooling, and/or ablation mechanisms, have been evaluated on the basis of
this simple hypothesis and the algebraic models cited earlier (Ref. 11). Also, a large body of experimen-
tal data exists to support the accuracy of these methods. The presence of shock waves or compression
zones in compressible flows provides a strong mechanism for driving a turbulent boundary layer out of
equilib§ium, and the need arises to utilize differential equations in defining the turbulence (see
Ref. 39).

One-Equation Model

The Glushko kinetic-energy-equation model of turbulence, described earlier for incompressible fluids,
has been extended in Ref. 40 to account for compressibility and separated flow. The incompressible flow
length scale expressions, Eqs. (78), were retained as is, in keeping with the experience with mixing
length behavior cited previously. It is emphasized that retaining Eqs. (78) for separated flows as well
as boundary layers imposes the restriction that the region of separation must be relatively narrow com-
pared to the upstream boundary-layer thickness. The effects of compressibility were introduced in the
local Reynolds number of turbulence, r, by using local properties in Eq. (76) and evaluating the kiretic
energy of turbulence, now defined as a mass-weighted average:

k = (110)

from a differential equation appropriate to compressible flow. The mass-weighted average kinetic-energy
equation for compressible flow is given here only in its boundary-layer form so that a direct comparison
can be made with Eq. (74):
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A comparison of Eqs. (111) and (74) indicates that compressibility, other than introducing local mean
fluid properties, u and p, in all the terms adds two terms on the right in Eq. (111). It is shown in
Ref. 40, however, that these terms can be expected to be negligibly small, except at hypersonic speeds.

Thus, mass weighting itself appears to account for much of the effect of compressibility on turbulence.

An example of the use of the one-equation model to calculate the behavior of a sharply disturbed tur-
bulent boundary layer is given in Ref. 41, where computations were compared with the data from a carefully
documented experiment (Ref. 42). Figure 14 is a sketch of the experimental configuration. A normal shock
wave was generated with a blockage device inside a cylindrical test section to create an interaction with
the turbulent boundary layer on the wall. The Mach number upstream of the shock, Mx.xo = 1.44, was

achieved by expanding air through a slightly supersonic nozzle. The shock wave could be moved along the
test section by adjusting the blockage caused by the shock generator. This permitted the surface pres-
sure, skin friction, and the local flow direction under the separation bubble to be mapped with fixed sur-
face gages (Ref. 43). Local mean flow and turbulence were also measured within the boundary layer and
separated regions. For the experimental conditions shown in the figure, the separation bubble was negli-
gibly narrow compared to upstream boundary-layer thickness, which allowed use of the Glushko length scale
expressions, Eq. (78). The results of the computation are shown in Fig. 15. The solid line labeled
"0-equation baseline" corresponds to the algebraic turbulence model described earlier. The dot-dashed
line is the Glushko model as defined here. The dashed line represents the Glushko model, but with the
modeling constants (79) modified to « = 0.22, ry = 120, and C = 4.69. The figure shows that all three
models yield excellent representations of the surface-pressure distribution. In terms of the skin fric-
tion, all the models do well upstream of the interaction. The algebraic model follows the data best at the
onset of the positive pressure gradient, although downstream of separation and reattachment it misses the
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data badly. The variants of the Glushko model 1ag the data at the onset of the pressure rise, but fit the
data quite well in the downstream region. The turbulence and mean flow appear to be significantly out of
equilibrium for this flow condition and, yet, the one-equation model with alterations or only minor
alterations of modeling constants based on flat plate, incompressible boundary-layer flow appears to cap-
ture the essentials of this flow.

Two-Equation Models

Wilcox and Traci (Ref. 25) extended their two-equation model to compressible flow by utilizing mass-
weighted dependent variables. The model contains molecular viscous terms that allow it to be integrated
over the entire boundary layer.

To supplement the transport equations of mass, momentum, and energy, Wilcox and Traci used the modi-
fied kinetic energy equation:

(112)
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Turbulent dissipation rate for compressible flow is
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For these equations, the modeling coefficients are

a* = am*['l - ]I—(]) exp(-ZReT)] b a.r = %
B*=0.09, oc=o*=%, 6=0.15 (114)
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R (116)
and the eddy diffusivity is
e = BK (117)

The resemblance between these equations and Eqs. (92) through (95) is striking. This is further emphasized
when it is found from comparisons with experimental data on flat plates that a reasonable choice for n in
Eq. (113) is n = 0, and from arguments similar to those used for neglecting the term that contains z in
Eq. (111) the term in Eq. (112) that contains &* can also be neglected. Thus all new terms that contain
the effects of compressibility or density fluctuations are eliminated. The model is sensitive only to the
value of mean density . Note that the effect of turbulence Reynolds number on the modeling coefficients
« and o* has been introduced as the Wilcox-Traci model evolved. The boundary conditions to the transport
equations and the turbulence modeling equations are

i =0 up =V, T = Tw
or 31 = -Pr S
aX2 chuw y=o
by (118)
where PrL molecular Prandtl number and cp = specific heat at constant pressure
p. u_2
k=0 = Wl g
um*vw R

Here Sp is a surface roughness parameter. For smooth surfaces, Sg > 300 1is required in the numerical
calculations. The outer boundary conditions are
uy = Ug T=Tg
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Full Reynolds Stress Modeling

The ARAP models have been extended to compressible flow (Refs. 33 and 34) through the use of averaged
primitive variables (see Eqs. (13)-(20)). [In this approach, the turbulence modeling considers the effects
of density fluctuations in an explicit manner through additional modeling equations for the correlation of
the velocity-density fluctuations. For boundary-layer flows, the turbulence modeling is expressed through
four Reynolds stress equations as for incompressible flows (e.g., Eqs. (102)-(105)), but these are supple-
mented by a heat flux equation, an enthalpy fluctuation intensity equation, and two density-velocity
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correlation equations. These equations are much to complex to present here in detail. In the computa-
tional e«amples that follow, the modeling constants and modeling assumptions used were as given in the
appendix of Ref. 43. As with the incompressible version of the model, the modeling equations contain
molecular viscous terms that permit integration of the equations directly to the surface where the inner
boundary conditions, equivalent to Eq. (118), can be applied. At the surface, all turbulent correlations
are equated to zero. At the outer edge of the boundary layer, just as in Eq. (119), the turbulence corre-
lations in the model can be assigned nonzero values to account for free-stream turbulence.

Comparison of Computations with Experimental Boundary-Layer Data

The results of boundary-layer computations based on the Wilcox-Traci and ARAP models, with the spe-
cific modeling coefficients described in Ref. 43, are now presented. For comparison, boundary-layer com- |
putations based on an algebraically defined mixing length model (as described earlier) are also included.
These mixing length computations were made with the boundary-layer program originally developed by Marvin
and Sheaffer (Ref. 44) and later modified by them to account for turbulent flow.

To test the abilities of the various turbulence models to predict the effects of compressibility in
the absence of pressure gradients, the results of the computations for a flat-plate boundary layer are
compared with results based on the van Driest II transformation, a technique that has been demonstrated to
conform to experimental data on flat plates to about +10% for all but very cold surface temperatures
(Ref. 45). The comparisons shown in Fig. 16 apply to an insulated flat plate, i.e., at recovery tempera-
ture and at a fixed Reynolds number based on a momentum thickness of 5000. The ordinate is the ratio of
the local skin-friction coefficients, at the elevated Mach number, to that given by the classic Karman-
Schoenherr formula for incompressibie flow. The effect of Mach number as given by the van Driest Il trans-
formation is shown by the solid line. The algebraic mixing length model, identified as Marvin-Sheaffer in
the figure, yields results that are in excellent agreement with the van Driest II line. At higher Mach
numbers, the ARAP Reynolds stress program yields results a bit higher than those given by the van Driest II
approach; they are near the upper limit of the range to which the van Driest method agrees with a large
body of experimental data. Although the Wilcox-Traci program yields results that are low over the entire
range of Mach numbers, they are still within 10% of the van Driest line and would be consistent with the
lower bound of the experimental data. Generally, then, all the models do reasonably well in predicting
the effects of compressibility on the skin friction at supersonic speeds in the absence of pressure
gradients. 9

To test the accuracies of the Wilcox-Traci and ARAP models for compressible flows with strong pressure
gradients, computer programs containing che turbulence models were used to evaluate the boundary layers
that occur in the series of experiments indicated in Fig. 17. The experiment of Zwarts (Ref. 46) was con-
ducted in a two-dimensional channel with a compression wedge used to create an adverse pressure gradient
on the flat test wall. Peake et al. (Ref. 47) measured the boundary layer on the inner walls of an axisym-
metric cylindrical duct in an adverse pressure gradient created by a compression centerbody. Sturek and
Danberg (Ref. 48) created their adverse pressure gradient with a two-dimensional compression ramp over
which the test boundary layer grew. In this experiment, the boundary layer not only experienced an adverse
pressure gradient, but was subject to the effects of a concave streamline curvature. The experiment of
Lewis et al. (Ref. 49) was also conducted on the inner walls of an axisymmetric cylindrical duct. However,
the centerbody used to create an adverse pressure gradient also permitted the boundary layer to relax
through a downstream favorable pressure gradient. The ranges of flow-field variables are quite limited in
these four experiments. Mach number ranged between 3.5 and 4. The Reynolds number range of the experi-
ments varied by less than a factor of 7. All experiments were conducted with the test surface at the
recovery temperature. Finally, the range of maximum pressure gradients, as measured by the parameter
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is quite narrow for this set of experiments.

To start all the computations, the values of the dependent variables through the boundary layer and
the surface skin friction at the first measurement station were established by assuming that the region
upstream of this point acted as a flat plate with uniform boundary-layer-edge conditions identical to
those that existed at the first test station. The effective length of this fictitious flat plate was
found by matching the calculated momentum thickness to the measured value at the first test station. The
surfaces were considered smooth and the turbulence level at the boundary-layer edge was set to zero.

Figure 18 shows Zwarts' data for the local skin-friction coefficient and the shape factor, H = &*/g.
The latter quantity is a sensitive function of velocity and temperature profile of the boundary layer.
For this mild pressure gradient flow, the algebraic model still does slightly better than either the two-
equation model (WT) or the Reynolds stress model (ARAP) in calculating the skin friction upstream of
x = 30 cm. Beyond this point, there is little to choose between the models. In terms of the shape factor,
the Reynoids stress model starts at a somewhat lower value, and this persists.

Figure 19 shows the streamwise distributijon of the skin-friction coefficient and shape factor for the
experiment of Peake et al. (Ref. 47). The p' 1is about 50% higher than in Zwarts' experiment. The
Wilcox-Traci and ARAP models predict the skin-friction data much better than the Marvin-Sheaffer mixing
length model. The ARAP full Reynolds stress model performs best in predicting the shape factor distribu-
tion, although, in the region of adverse pressure gradient and downstream (the primary regions of inter-
est), the Wilcox-Traci model does equally well.

In the experiment of Sturek and Danberg (Ref. 48), the boundary layer that developed on the surface
of a concave circular ramp was measured. Thus, this boundary layer experienced the simultaneous effects
of adverse pressure gradient and streamline curvature. The latter effect has been shown in Ref. 50 to be,
in itself, rather significant, yet the present calculations ignore surface curvature. The skin friction
and shape factors are shown in Fig. 20. Note in this figure that the Marvin-Sheaffer model shows very
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little of the experimentally observed rise of the skin friction in the downstream portion of the experi-
ment. The Wilcox-Traci model overestimates the rise in skin friction. The ARAP mode! overpredicts the
starting value of skin friction but seems to follow the trends in the data by staying azbout the same
amount above the data over all test stations. Caution must be used when interpreting the comparisons of
calculated and measured shape factors. The Sturek-Danberg velocity profile data show an overshoot of the
velocity over the free-stream value far from the surface. Such an overshoot makes it difficult to define
the position of the boundary-layer edge; this is reflected in both elements of the shape factor — momentum
and displacements thicknesses. Thus, Sturek and Danberg give a range of values of H at each station.
Even though the ones plotted here are the larger values given, they are much lower than the results of the
Marvin-Sheaffer model. The more complex models seem to capture the character of the experimental data.

The last set of data is that of Lewis et al. (Ref. 49). These data are unique in that they contain
an adverse pressure gradient, as do the other experiments cited earlier, followed by a downstream region
of favorable pressure gradient wherein several stations of data are obtained. The local skin-friction
coefficient and the shape factor are shown in Fig. 21. On the average, the ARAP model performs best
because the Wilcox-Traci model appears to underpredict skin friction in a favorable pressure gradient
rather badly. The Marvin-Sheaffer model does not achieve a high enough peak value of skin friction, yet :
does excellently in the region of favorable pressure gradient.

From the comparisons of the computed and experimental results in Figs. 15 through 21, it can be con-
cluded that the differential equation models of turbulence, either one, two, or more modeling equations,
can represent supersonic boundary-layer data in rather severe comparison flows without adjusting the
modeling constants. The algebraic models perform weil only for very small and gradual compressions and
for expansion regions. More complexity within the differential equation models, however, does not
dramatically improve the accuracy of the models for two-dimensional boundary flows. The more complex
models can be extended to more general types of flow, hopefully, without requiring changes in the modeling
constants. It is not certain at this time, however, that the models of inhomogeneous turbulence will
prove to have a universal character for all flow situations, at least to the accuracy required in aero-
dynamic applications. This concern has led to the development of methods (described in the next section)
that rely on a direct computation of most of the turbulence, in terms of energy and momentum, and modeling
what remains.

DIRECT SIMULATION OF LARGE EDDY STRUCTURE

A method of computing turbulent flows that potentially is universally applicable is the computer simu-
lation of the large eddy structure of the turbulent flow fields. The basis for this belief lies in the
experimentally observed spectral character of turbulent flow fields. Generally, the large eddies in these
fields are created by instabilities of the mean flow. These large eddies are relatively long lived,
anistropic, and are different in every type of flow. The large Reynolds numbers associated with these
eddies cause them to become unstable in themselves, and they break up to produce smaller eddies. Of
course, smaller eddies also interact and merge to form larger ones. This process of the production of
smaller eddies through instabilities and the recombination of eddies continues until a continuous spectrum
of eddies is generated. The process reaches a stationary random state when eddies are produced that are so
small that the viscosity of the fluid enhances their stability and provides the means for dissipating their
energy into heat. These smallest eddies have short life times and tend to be isotropic in character, hav-
ing evolved from eddies that themselves were rather randomly oriented. This process is not generally
uniform but is intermittent involving such events as "bursts" and “"spots" of turbulence. It is the com-
plexity of this process that makes suspect the universality of statistical turbulence theories discussed
previously, especially those that contain only few statistical moments. Large eddy simulation of turbu-
lence computes these mechanisms for the largest eddies that contain most of the energy of the turbulence
and models the effects of the eddies smaller than the finite difference mesh can resolve. By modeling only
a fraction of the turbulence, the overall accuracy of the method becomes less dependent on the accuracies
of the closure models than statistical methods, where all of the turbulence is modeled. Also, the iso-
tropic and, hopefully, universal character of the small-scale eddies may permit the development of closure
models based on sound physical arguments. It is this potential for accurate numerical simulation of tur-
bulence that is driving the development of methods that are, at this time, still very costly computa-
tionally. Their future use as engineering tools for the aerodynamicist will ultimately depend on the size
of the smallest scales of turbulence that will have to be computed to capture the essence of particular
turbulent flow fields. Because these computations provide much more detailed information than can be mea-
sured in a turbulent field they will most certainly also be useful in concert with experiments in fluid
mechanics toward improving statistical turbulence models for engineering applications.

The universal character of the small scales of turbulence is shown in Fig. 22 where the data of
Tieleman (Ref. 51) obtained at different positions in a boundary layer are compared with those of Compte-
Bellot and Corrsin (Ref. 52) in an homogeneous essentially isotropic flow. The coordinates of the fiaure
were chosen to collapse the data at the high wave numbers. The abscissa is the ratio of the wave number
to the wave number corresponding to the Kolmogorov scale. The ordinate is the measured one-dimensional
energy spectral function normalized so as to collapse the Heisenberg isotropic turbulence theory (Ref. 53)
to a single line. At the higher wave numbers, the boundary-layer data at different values of turbulence
Reynolds number, free-stream speeds, and positions within the boundary layer correlate quite well. The
homogeneous, isotropic turbulence data measured by Compte-Bellot and Corrsin also correlate with the
boundary-layer data at the higher wave numbers. This illustrates that the small scales of turbulence at
different points in a particular flow or in completely different flows actually possess a universal char-
acter. Further, it appears that this character is well represented by the Heisenberg theory, which pre-
dicts the upper bound of the "inertial subrange," as k/kg ~ 0.5, and the "dissipation r-gion" for
k/kg > 0.5. The figure also illustrates that the larger eddies or small wave numbers contain most of the
energy of the turbulence and depend in character on the local mean flow. Finally, the fiqure indicates
that an increased local turbulence Reynolds number broadens the range of wave numbers in the flow, extends
the “irertial subrange," and diminishes the fraction of the large eddies that are not universally corre-
lated. This latter observation may prove useful in the decisions regarding coordinate mesh dimensions in
aerodynamic computations.
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The first large eddy simulations were applied to gecphysical studies of the dynamics of the atmo-
sphere. In the United States, the group at the National Center for Atmospheric Research and Stephen
Orszag and his colleagues have been the leaders in this field (Ref. 8). Extension of this work to prob-
lems in fluid mechanics and aerodynamics introduces new conditions that require careful reexamination of
the fundamental approaches utilized in the past. These conditions involve the effects of compressibility,
the interaction of adjacent irrotational and turbulent fields, near surface phenomena where viscosity
plays an increasingly important role, and a large variety of flow configurations. On the other hand, the
aerodynamic flow fields are simpler in that gravitational forces need not be considered. In this
review, emphasis will be placed on the program taking place under NASA sponsorship at Stanford Univer-
sity and being performed at the Ames Research Center. The objectives of this work are to enhance the
understanding of the basic methods involved, to examine the interaction of the physical and numerical
methods, and to test subgrid closure models as applied to the previously mentioned aerodynamic conditions.
The approach of achieving these objectives is to consider a sequence of increasingly complex flow fields
starting with isotropic turbulence and then considering homogeneous flows undergoing normal strains,
homogeneous shear flows, the free interaction of tangent streams, and channel flows. Although channel
flows have been simulated in the past, originally by Deardorff (Ref. 7) and extended by Schumann (Ref. 8),
these investigations employed the "law of the wall" near the channel surface and thereby avoided integra-
tions to the surface. In doing this they did not illuminate near surface phenomena. At present, the bulk
of the work has been confined to incompressible flows.

Low Reynolds Number Simulations of Isotropic Turbulence

Many of the concepts and methods underlying large eddy simulation can be illustrated through consid-
eration of the decay of an homogeneous, isotropic turbulent field of an incompressible fluid. In fact, it
is best to start with the examination of the method by considering the case where the turbulence Reynolds
number, qi/v, is sufficiently small so that the wave-number range between the largest eddy and the
Kolmogorov eddy can be captured by the volume of flow considered and the computational mesh into which it
is divided. In this case, there is no subgrid size turbulence of significance and turbulence modeling is
not required. The computation can proceed as an accurate time-dependent solution of the Navier-Stokes
system of equations.

One solution to this type of problem has been reported in Ref. 54 as part of a general method to
compute lTow Reynolds number, simply strained homogeneous turbulence. The turbulence simulation program
was prepared for use on the ILLIAC IV computer and is described with the table given in Fig. 23. For this
problem, the computational volume was divided into as many as 64° mesh cells and the magnitude of the com-
putationa] effort can be seen from this figure. Even this relatively simple problem must be handled with
the largest and fastest computers available. The algorithms that were used are shown at the bottom of the
figure. Spatial differentiation was accomplished with Fourier transforms, similar in principle to the
work of Orszag (Ref. 55) but differing in detail. Aliasing was controlled to avoid instabilities in the
computations. The temporal advance in the computations was explicit and employed the fourth order
Runge-Kutta scheme.

The problem is started by fitting the magnitudes of the coefficients in wave number space to an exper-
imental spectral function (Ref. 52). Then the directions of these vector coefficients are randomized in
wave number space, subject to the constraint of maintaining continuity. Because of the use of Fourier
transforms, the conditions at the opposite faces of the computational volume are identical, and this
periodic boundary condition together with the dimension of the computational volume beirg considered
establishes a maximum wavelength or minimum wave number that can be computed. The ratio of the maximum to
minimum wave number depends on the number of mesh points fitted into the computational volume. The
results of some of these computations are shown in Fig. 24 where the evolution of the energy spectrum of
turbulence, beginning from the experimentally established spectrum, is shown as a function of the computa-
tional steps in time. Figure 24(a) shows the case where the minimum wave number treated is 0.2 cm~! and the
ratio of the maximum to minimum wave number was constrained to 21, equivalent to 437 alias free computa-
tion. It is observed that the turbulence decays as a whole as a result of the viscosity of the air. Simi-
lar computations with v = 0 showed the computational schemes to be energy conserving. As the spectral
energy distribution evolves, it develops a bunching of the energy at the high wave numbers, even exceeding
the initial values there. Figure 24(b) shows the improvement that results from increasing the number of
mesh points within the computational volume to 643. Finally, Fig. 24(c) shows the effect of both increas-
ing the number of mesh points and reducing the dimensions of the computational volume, i.e., shifting the
wave-number range considered to larger values. The computation now captures the smaller eddies where vis-
cous dissipation is larger and the results are beginning to approach the expected minus 5/3 power varia-
tion with the wave-number characteristic of the inertial range. The dissipation range indicated in
Fig. 22 is still not approached in these calculations.

Another example of the computation «f isotropic turbulence at low Reynolds number is the work of
Clark, Ferziger, and Reynolds (Ref. 56). As with the computation described previously, the computational
volume was 'ivided into 64° mesh points. Clark et al. used the low Reynolds number data of Ref. 52 to
guide the choice of the dimensions of the computational volume being considered. Because this computa-
tion also employed periodic boundary conditions on opposite faces of the computational volume, the authors
decided that minimum dimension of the computational volume had to be at least twice the distance between
two points where the experiment showed the Tongitudinal and lateral correlation of velocity components
vanished. The largest wave number computed was established by the number of mesh points employed in the
computation. The problem was initialized similarly to the Ragallo calculations. The initial spectral
energy data (Ref. 52) corresponded to turbulence that had decayed to such a low Reynolds number that the
selected computational volume encompassed the scales of turbulence where essentially all of the dissipa-
tion occurs. The Navier-Stokes equations were solved in an explicit time-dependent manner with a third-
order scheme for advancing in time developed by the authors. Fourth-order accurate differencing was used
to establish gradients in physical space. Without any subgrid modeling the results of the calculations
agreed very well with the experimental rates of decay of turbulence kinetic energy found experimentally in
Ref. 52.

i




321

When the calculation was completed, the numerical data were used to test the accuracy of a variety of
subgrid closure models. To do this, it was imagined that the computational volume had only been divided
into 83 mesh points and that subgrid closure models were to be utilized to account for the wave numbers
that could no longer be detected with the coarser grid. Each of the new mesh volumes contained 512 of the
computed points of the original fine mesh. The equivalent to the "top-hat" filter represented by Eq. (58)
was then applied to the fine mesh data. The filtered velocity in the coarse mesh is then

) i+8 jHe k+8
U, (i,d,k) = y73 . B wlitane (121)
i'=i-8 j'=j-8 k'=k-8

where i, j, k, i', j', k' are mesh point labeling indices in the x,, x,, x, directions, respectively.
The averaging "volume" or ap in Eq. (58) was taken as (16/8)A. This i5 consistent numerically with the
value of ap = 24 found to yield the best results in Ref. 10. The contribution to the velocity of eddies
with subgrid scale dimensions is then

Ug = U = g (122)
at each of the 512 points within the coarse mesh. To assess the modeling, each of the terms on the right

of Eq. (55) was computed at the centers of the coarse mesh cells, using the values from Egs. (121)
and (122). Thus
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These quantities were then used to compare the "data" with models of the subgrid contributions, utilizing
constitutive relationships expressed in terms of the filtered velocities of the coarse mesh. The quanti-
ties compared are shown in Fig. 25. The column at the left represents the actual quantities being modeled;
first, the difference between the quadrature of the filtered quantities and the same quadrature itself fil-
tered; second, the interaction of filtered and subgrid scale quantities; and third, the subgrid Reynolds
stresses. The second column shows how each of these quantities contributes to the decay of the turbulent
kinetic energy. These proportions, while interesting, are likely to change with Reynolds number of the
turbulence and must be viewed as being characteristic of lTow Reynolds numbers.

The third column shows the modeled constitutive relations for these quantities. The first was derived
by Leonard (Ref. 9). It is the spatial analogue of the second term on the right of Eq. (44). The second
term in this column was deduced in Ref. 56. Finally, the thir term is an eddy diffusivity model in terms
of the instantaneous strain of the filtered field. The models for the eddy diffusivity itself are shown
below. They include the early model of Smagorinsky (Ref. 57), a vorticity model, a kinetic energy model,
and finally merely a constant.

The fourth column shows how well these modeling equations based on the coarse grid averages carrelate
with the actual quantities in the first column when evaluated from the fine grid data and Eqs. (123)-(125)
Correlation means the following

C = ((value of quantity) x (modeled quantity))

p 172 (126)
[(value of quantity)? x (modeled quantity’?] '’
The filtered quantity of the first row, albeit small in contributing to energy decay, is correlated quite
well by the model. The filtered subgrid correlation terms are correlated to about 0.7, as are all the
subgrid eddy diffusivity models. It is surprising that all of, the models, ranging from a constant eddy
viscosity to one which requires the local kinetic energy of turbulence yield essentially the same correla-
tion with the fine mesh data. This insensitivity to the closure model may again have been forced by the
low Reynolds number of the example and may not be true generally. Finally, the fifth column shows the
constants in the eddy diffusivity models required to yield ghergy decay given by the fine mesh solution.
This is an example of how the numerical simulation of turbulence can contribute to the evaluation of con-
stants in constitutive relationships for turbulence modeliug.

High Reynolds Number Simulation /of Isotropic Turbulence

In the previous examples of low Reynolds number simylations of isotropic turbulence, the values of
the mesh point spacing were chosen to be able to numerically resolve those eddies with large wave numbers
where most of the turbulence dissipation occurs. The capacity of the computers permitted using computa-
tional volume whose sides were about 20 times as long as the transverse integral scales measured in the
experiment of Compte-Bellot and Corrsin. The agreement of the results with the data indicated that this
distance was sufficiently large to avoid seriously biasing the results by the assumption of pericdic bound-
ary conditions on opposite faces of the computational volume. In addition, the computer volume was suffi-
ciently large to contain essentially all of the kinetic energy of the large eddies. When high Reynolds
number flows are considered, the range of wave numbers that are present in the flow increases dramatically
and all the wave numbers cannot be accommodated by the computer. The computer size limitations fix the
ratio of Kpay/kmins but the appropriate values of kpayx and kpjn must again be established by reference
to experimeﬂ%al gata If kmax were set to capture the energy dissipation, the kmin would be too large
to encompass much of the kinetic energy of the large scales of turbulence and the results would be biased
by the use of periodic boundary conditions on faces too close together relative to the correlation lengths.

|
STEP
[ | "




The approach, then, is to move the entire wave number range to smaller values, relying on the subgrid
closure models to account for the turbulence dissipation.

To determine the bounds on the wave numbers most appropriate to high Reynolds number turbulence,
studies were conducted (see Ref. 58) utilizing a variety of computational schemes, sizes of computational
volumes, filter functions, and closure models. The computational methods utilized in the examples shown
here were fourth-order accurate in space and second-order accurate in time. The reference experimental
data were the highest Reynolds number cases of Ref. 52. Figure 26 shows the development in time of the
gradient skewness factor, defined as

e o i=1, 2, or3 (127)
. ((a, .)2>3/? (not summed)

The skewness factor was selected as the basis of comparison for these calculations because it is physically
related to spectral transfer of energy in the inertial subrange and is particularly sensitive to the joint
behavior of spectrally dependent scales and intensities. Figure 26(a) shows the development of the skew-
ness when the computational volume dimension is about 10 to 14 times the experimental lateral integral
scale. There are three modeling conditions shown here, and each one of these is represented by three lines
for the skewness in each coordinate direction. In these examples, the computational volume is divided

into 16 parts on each side and has the mesh dimensions, h, as indicated. The case labeled with 4/h
indicates the use of the Gaussian filter function with 2 = 2h. The cases labeled with k. represent

uses of the sharp cut-off filter in wave space, the Fourier transform of Eq. (63). The cu%-off wave num-
ber and equivalent averaging volume in physical space are related as 4 = nkc. The Smagorinsky model,
referenced in Fig. 25, is used for the subgrid Reynolds stress in all of these cases. In this fiqure, the
initial skewness is small because the initially applied random field is nearly Gaussian. Over the times
shown, the calculated cases develop negative skewness, as occurs in experimental data, but not with the
monatonic behavior that would have been expected. It is ncted that anisotropy develops in all these cases.
Incidentally, quantitative comparison of these skewness factors with published experimental data cannot be
made because the computed skewness factor is based on gradients of filtered velocities that could only be
compared with reinterpreted raw experimental data, if it were available. Figures 26(b) and 26(c) show
represent:tive results that occur from enlarging the computational volume. Figure 26(b) is based on the
use of the Gaussian filter function with two eddy diffusivity closure models, the Smagorinsky and the
vorticity models, refer to Fig. 25. Figure 26(c) indicates the effect of somewhat different initial condi-
tions used in connection with the sharp wave-number cut-off filter. Both of these figures show that the
use of the larger volume, with all the different modeling combinations, yields reasonable skewness behavior
and isotropy in these calculations. The asymptotic numerical values of the skewness, however, depends on
the modeling details. It appears, then, that modeling volumes must have dimensions about 20 times lateral
correlation length scales or about 10 times the integral scales to avoid serious biasing by the periodic
boundary conditions customarily employed in these computations. The low turbulence calculations, described
earlier, conformed reasonably well with these criteria.

Figure 27 shows the rate of decay of the kinetic energy of the filtered turbulence. The lines repre-
sent the Compte-Bellot and Corrsin data in their original state and as a result of being filtered by the
two types of filter functions. The Smagorinsky eddy diffusivity model was used for the subgrid scale
Reynolds stress in the computations with both of the filter functions. The computed results are indicated
with the discrete point symbols. It is noted that the filtering process eliminates much of the actual
kinetic energy of the turbulence, the ratio of retained total kinetic energy being only about 40% and 57%
(at U_t/M = 100) for the Gaussian and sharp wave-number cut-off filters, respectively. Good agreement is
achieved in these comparisons when the modeling constant in the Smagorinsky model is set to C = 0.222
and C = 0.215 for the Gaussian and wave-number filter, respectively. It appears that use of different
filter functions, while capturing significantly different proportions of the kinetic energy, does not have
a large effect on the modeling constant in the Smagorinsky model. These constants, however, differ by
about 20% from the modeling constant evaluated from the Tow Reynolds number data, and this may be indica-
tive of the limitations of an algebraic eddy diffusivity closure model.

Figure 28 shows how well the numerical simulation represents the filtered experimental three-
dimensional energy spectra when the sharp cut-off filter in wave-number space is utilized. The lines
represent the filtered data at three times. The points are computed results at U_t/M = 98 and 171. The
computations were started by fitting the filtered experimental spectral data at U_t/M = 42 as described
previously. Both the Smagorinsky and vorticity models for the eddy diffusivity are shown. Except for the
results at the highest wave numbers, the comparisons are quite good for either of the diffusivity models.
Figure 29 shows the spectral character of computations based on the Gaussian filter with A = 2h. The
high wave-number results appear to be a little better than those shown in Fig. 28.

In addition to providing the results noted here for the numerical simulations of high Reynolds number
homogeneous, isotropic turbulence, Ref. 58 also carefully examined the influence of different numerical
schemes and alternative conservation equations. One aspect of the study was the use of the vorticity
equation rather than the primitive equations given here as the primary equation in the simulation. The
results showed no significant advantage of one equation over the other. The vorticity equation, perhaps,
would be useful for turbulent flow fields that border irrotational flows, where & = 0. Another part of
the study was devoted to examining the evaluation of @;G; and it was concluded that this could be done
best numerically be directly filtering the filtered depen3ent variables rather than modeling as in Fig. 25.
Finally, a careful examination was made of Fourier methods for spatial differencing, and despite the
increased accuracy of these methods no real improvements in the simulation process resulted. In fact, the
modeling constants for eddy diffusivity models, found by fitting the simulations to corresponding experi-
mental decay rates, depended only slightly (~10%) on the different numerical methods employed.

High Reynolds Number Channel Flow

To complete this brief description of the status of large eddy simulation methods in turbulent fluid
flows, it is necessary to refer to Schumann's recent calculation of channel flows (Ref. 59) that extends




the earlier work of Refs. 7 and 8. This work represents the most detailed computation extant of a flow
field of engineering interest. Although presentation of all its details is beyond the scope of this
paper, some of its features are given here to contrast or relate them with those in methods described
earlier.

Schumann employed noncubic computational meshes and to take this into account, he utilized finite
difference equations that were based on integral conservation equations rather than point partial differ-
ential equations. This complicates the averagirg process in that some moments of turbulence are averaged
over both surfaces and volumes. These moments were interrelated with modeling coefficients that were
given values ranging from 0.6 to 0.9, where unity implies the surface and volume average are equal. In
addition, the finite difference methods were geometrically adjusted to account for the different mesh
dimensions in the various directions. Apparently, these effects are handled with sufficient accuracy to
yield results that are insensitive to modifications in the mesh dimensions.

The overall computational volume employed in these calculations is large. It spans the channels
except for the sublayer regions adjacent to the walls. The length of the computational volume along the
channel axis is as long as four chanrel heights, and this is sufficiently large relative to integral
scales that periodic boundary conditions in the direction along the channel are quite appropriate. The
use of such a relatively large computational volume, with limited computer capacity, places a burden on the
subgrid stress model. The lowest wave number of the subgrid motion is sufficiently small to be in the
spectral region where the turbulence is inhomogeneous. To accommodate this, Schumann represents the sub-
grid Reynolds stress, averaged over an element of surface as the sum of an "isotropic part" and an
“inhomogeneous part,"

= ‘iso(sij = <S1.J.)) - <S1.J.) (128)

“inho
Here the instantaneous strain rate S;j depends on the large eddies. The bracketed terms are time aver-
ages that are steady-state quantities.” The first term on the right is the contribution of the locally
isotropic scales of the subgrid eddies, whereas the second term is due to the larger inhomogeneous subgrid
structure. Schumann uses the form indicated for the isotropic part "to get zero time-mean values of the
SGS (subgrid scale) stresses for i # j." The implication of this statement is that the time correlation
of fluctuations in the locally isotropic eddy diffusivity ejgo and the instantaneous excess strain rate
Sij - ¢Sij) are zero. This is equivalent to the expectations that models, such as those indicated on
Fig. 25, éid not introduce an average shear stress in the studies of homogeneous, isotropic turbulence
discussed earlier. The random character of the large eddy strains relative to their mean values may be
assuring this "isotropic" behavior.

The "isotropic" eddy viscosity ejgq 15 evaluated with a kinetic energy model. The length scale in
the model is the square root of the surface area over which the Reynolds stress is acting. The subgrid
kinetic energy used in the model is established with a separate modeled equation, similar to Eq. (84) but
containing the time-dependent large-scale motion to feed the subgrid turbulence. When Schumann's model is
reduced to a cubic mesh, it has the same form functionally as the kinetic energy model used by Clark et al.
The modeling constant found by Clark et al. agrees to within 3% of the constant Schumann identified as a
theoretical value (Schumann's Table I). Schumann, however, found empirically that it was necessary to
reduce this constant by a factor of 1/3 in his computations. This large change in the modeling constant
may indicate the shortcomings of eddy diffusivity closure models to apply over flows with largely different
Reynolds numbers. The inhomogeneous eddy viscosity eipho 1S evaluated from the mixing length expres-
sion, Eqs. (67) and (68). Equation (70), however, is replaced by

£ = 0.1(ax - sz)l/2 (129)

For the finest grids used, the &, from Eq. (129) is about 1/8th that normally used in algebraic statisti-
cal modeling of channel flows, and thus, in the core of the channel it would be expected that the subgrid
scale contribution to the turbulent shear stress would be only about 1/64th of the total. This expecta-
tion is consistent with Schumann's numerical results. Towards the surfaces, the contribution of the sub-
grid Reynolds stress rises to dominate the shear. As the surface boundary conditions are applied by match-
ing the computations to the "law of the wall," there is a large interplay between the various modeling
assumptions in the vicinity of the surfaces and the contribution of each is not clear. Schumann found
rather good agreement with experimentally measured mean-channel-flow velocity profiles and shear stress.
The comparisons with turbulence quantities, such as the intensity in each coordinate direction, and corre-
lation lengths show reasonable agreement with data. Improvements in these comparisons through refinements
of the computational mesh are not dramatic and may not be warranted when it is noted that the mesh changes
alter the computational times on an IBM 370/165 from less than 1 hour to as high as 14 hours. Finally,
Schumann used computations to test modeling constants in the statistical theories of turbulence and found
that many of the so-called constants are functions of the radial position across the channel. This last
result tends to establish large eddy simulation techniques as being potentially the more universal method.

LAGRANGIAN SIMULATION OF WAKES WITH DISCRETE VORTEX FILAMENTS

An alternative to the fixed mesh, three-dimensional finite difference simulation technique presented
in the previous section is the modeling of turbulence by tracking vortex filaments in Lagrangian refer-
ence frame. This general approach is the topic of the paper by Professor Clements in this lecture series,
therefore only a very brief description of the technique developed by Leonard at the Ames Research Center
(Ref. 60) will be given here. Leonard's approach is unique in its use of three-dimensional closed vortex
filaments. The technique is illustrated with the simulation of the unsteady flow over a sphere at high
Reynolds number shown schematically in Fig. 30. The aggregate flow field about the sphere is composed of
a boundary layer, a fluctuating vortical wake flow that translates downstream relative to the sphere, and
a fluctuating potential flow that responds to the closed ring vortices to maintain the proper inviscid
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boundary conditions on the surface of the sphere and in the far flow field. The three essential mathe-
matical elements of the problem are listed at the bottom of Fig. 30.

The boundary-layer model used by Leonard is described in Fig. 31. The boundary layer is represented
by a sheet of vorticity that spills into a train of discrete vortex filaments. The amount of vorticity
and the flux of circulation at each station, per unit of width of the boundary, are indicated by the equa-
tion on this figure. When the downstream front of the boundary-layer sheet, moving with a velocity
u(rg)/2 moves past a specified downstream latitude, a ribbon from the sheet is removed from the down-
stream edge and formed into the vortex filament of circulation Ty. The ribbon length is
u(rs)-r/[2(dr/dt)]. Besides their property of circulation, the vortex filaments are further defined with
an effective core radius and are subdivided into discrete nodes along their axes. The newly formed vortex
and any predecessors still in contact with the sphere constitute the remaining part of the vorticity in
the attached boundary layer. The position in time of each vortex node is governed by the circulation,
location, and shapes of all the vortices, including the vortex containing the node in question. The nodes
of a particular vortex are identified as a set and their motion in time establishes the shape the vortex
attains. The newly formed vortices follow the spherical surface for awhile and then separate from it. In
the computation, they are followed in time till they either move downstream to the limit of the computa-
tional volume, =7D, or the oldest surviving vortex is removed when their number exceeds a prescribed number.
This removal process and viscous growth of the vortex cores represent the subgrid-scale modeling for this
type of turbulent flow. To excite the- vortex filaments into a nonsymmetric unsteady flow, the boundary-
layer vortices are initially perturbed to destroy geometric symmetry about the axis through the sphere
parallel to the free-stream flow.

The drag coefficient Cp computed in time is shown in Fig. 32. The points shown are averages over
time spans during which the number of vortices in the outer flow is constant. The drag coefficient is
somewhat higher than that characteristic of high Reynolds number flow. The corresponding side-force
coefficients are shown in Fig. 33. They show some intermittency in their behavior.

CONCLUDING REMARKS

A review has been presented of techniques of turbulence modeling made possible by the capabilities of
large modern computers. The two Eulerian grid methods, statistical turbulence theory and large eddy simu-
lations, were shown to have many features in common. Advances in the statistical methods, for example the
use of direct Reynolds stress modeling rather than use of eddy diffusivity, could lTead to subgrid modeling
sufficiently accurate to permit reducing the range of large eddy wavemembers that have to be simulated.

On the other hand, detailed large eddy simulations of idealized flow fields may provide “data" to guide
improved constitutive relationships in the statistical methods. Thus, the two methods complement each
other, and advances in one are likely to advance the other. The Lagrangian methods that follow vortex
motions, at present, are alternative and competing techniques. For certain types of problems, it may be
advantageous in the future to use both discrete vortices and turbulence fields in a single computation.
When the practitioner of turbulence modeling aspires to the development of a universal model, he must draw
on experience with all of the computational techniques. Further, his abilities to computationally con-
sider minute details of turbulence will force laboratory experiments that verify and guide turbulence
modeling to supply data to the same or even finer levels of detail.
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